K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).a. C... - H

ctv thảo (giỏi toán của chta bên h :v) đã làm rồi. bạn nào cần thì click vào đường link xanh bên trên nhé 

2 tháng 2 2021

Gọi I là giao điểm của DE và AH.

Câu a) Ta dễ dàng chứng minh được ADHE là hình chữ nhật, sử dụng tính chất hình chữ nhật để suy ra \(\widehat{ADE}=\widehat{DAH}\)

Mà \(\widehat{DAH}=\widehat{C}\) (cùng phụ với góc ABC) nên suy ra \(\widehat{ADE}=\widehat{C}\)

Từ đó dễ dàng chứng minh được tam giác AED đồng dạng với tam giác ABC theo trường hợp góc - góc.

Câu b) Chắc là phải sử dụng lớp 9 sẽ nhanh hơn. Các bạn thử tìm thêm cách khác nhé

Chứng minh tứ giác ABNM nội tiếp suy ra \(\widehat{ANB}=\widehat{AMB}\)

Dễ dàng chứng minh được \(\widehat{AMB}=\widehat{ABC}=\widehat{AED}\)

Suy ra: \(\widehat{ANB}=\widehat{AED}\)và hai góc này ở vị trí đồng vị, suy ra: DE //BN

Câu 3. Sử dụng tỉ số  đồng dạng hợp lí rồi suy ra kết quả

Ta dễ dàng chứng minh được: \(\Delta BDH\)\(\Delta BAC\).và tính được \(BD=\frac{DH.AB}{AC}\)

Chứng minh được: \(\Delta CEH\)\(\Delta CAB\).và tính được \(CE=\frac{EH.AC}{AB}\)

Chứng minh được: \(\Delta DHE\)\(\Delta BAC\).và suy ra được \(\frac{DH}{EH}=\frac{AB}{AC}\)

Suy ra: \(\frac{BD}{CE}=\frac{DH.AB}{AC}:\frac{EH.AC}{AB}=\frac{AB^2.DH}{AC^2.EH}=\frac{AB^2.AB}{AC^2.AC}\)

Vậy \(\frac{BD}{CE}=\frac{AB^3}{AC^3}\)

21 tháng 4 2019

a) MN // BC. Áp dụng định lí Ta-let, ta có :

\(\frac{BM}{AB}=\frac{CN}{AC}\)hay \(\frac{2}{8}=\frac{CN}{10}\)\(\Rightarrow CN=2,5\)

b) MN // BP ; NP // BM nên tứ giác MNPB là hình bình hành

\(\Rightarrow\Delta BMN=\Delta NPB\left(c.g.c\right)\)hay \(\Delta BMN\approx\Delta NPB\)

c) BM = 2 ; AB = 8 nên AM = 6

MNPB là hình bình hành nên NP = BM

Xét \(\Delta NPC\)và \(\Delta AMN\)có : 

\(\widehat{PNC}=\widehat{MAN}\left(dv\right);\widehat{NPC}=\widehat{AMN}\left(=\widehat{ABC}\right)\)

\(\Rightarrow\)\(\Delta NPC\)\(\approx\)\(\Delta AMN\)( g.g )

\(\Rightarrow\)\(\frac{S_{NPC}}{S_{AMN}}=\left(\frac{NP}{AM}\right)^2=\left(\frac{BM}{AM}\right)^2=\left(\frac{2}{6}\right)^2=\frac{1}{9}\)

Y
28 tháng 2 2019

2. A B C D O E F

+ AB // CD \(\Rightarrow\dfrac{AO}{CO}=\dfrac{BO}{DO}\)

\(\Rightarrow\dfrac{AO}{AO+CO}=\dfrac{BO}{BO+DO}\Rightarrow\dfrac{AO}{AC}=\dfrac{BO}{BD}\)

+ OE // CD => \(\dfrac{OE}{CD}=\dfrac{AO}{AC}\)

+ OF // CD => \(\dfrac{OF}{DC}=\dfrac{BO}{BD}\)

\(\Rightarrow\dfrac{OE}{CD}=\dfrac{OF}{DC}\Rightarrow OE=OF\)

Bài 1:

a: Xét hình thang ABCD có MN//AB//CD

nên AM/MD=BN/NC

b: AM/MD=BN/NC

=>MD/AM=NC/BN

=>\(\dfrac{MD+AM}{AM}=\dfrac{NC+BN}{BN}\)

=>AD/AM=BC/BN

=>AM/AD=BN/BC

c: AM/AD=BN/BC

=>1-AM/AD=1-BN/BC

=>DM/AD=CN/CB