K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)

\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)

hay \(\widehat{ACB}=30^0\)

Vậy: \(\widehat{ACB}=30^0\)

b) Xét ΔADB và ΔEDB có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔADB=ΔEDB(c-g-c)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(đpcm)

c) Ta có: BE+EC=BC(E nằm giữa B và C)

BA+AM=BM(A nằm giữa B và M)

mà BE=BA(ΔBED=ΔBAD)

và BC=BM(gt)

nên EC=AM

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔDAB=ΔDEB)

AM=EC(cmt)

Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)

nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

nên \(\widehat{ADM}+\widehat{ADE}=180^0\)

\(\Leftrightarrow\widehat{EDM}=180^0\)

hay E,D,M thẳng hàng(đpcm)

21 tháng 3 2022

wow, Trâu lm hình đc tick .-.

2 tháng 12 2018

A B C E D

HÌNH KO CHUẨN LẮM

a) Xét \(\Delta ABD-\Delta EBD\) có :

  BA = BE 

 \(\widehat{ABD}=\widehat{EBD}\)( phân giác )

DB là cạnh chung 

=> \(\Delta ABD=\Delta EBD\)(C,G,C)

b) theo câu a) 2 tam giác ... = nhau 

=> DA = DE ( 2 cạnh tương ứng )

c) theo câu a)  2 tam giác ... = nhau 

=> \(\widehat{BAD}=\widehat{BED}=90^o\)( 2 góc tương ứng )

d) xét 2 tam giác \(\Delta EDB-\Delta EDC\)CÓ:

  BED = CED ( góc vuông )

DE là cạnh chung

 Để 2 tam giác \(\Delta EDB=\Delta EDC\) thì 

\(\widehat{EBD}=\widehat{C}\)

MÀ \(\widehat{EBD}=\frac{1}{2}B\)

vậy để 2 tam giác đó = nhau thì góc B phải gấp 2 lần góc C

A: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

=>DA=DE và góc BED=90 độ
b: BA=BE

DA=DE

=>BD là trung trực của AE 

DA=DE

DE<DC

=>DA<DC

14 tháng 4 2023

Vẽ hình đc k

 

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD
BD chung

=>ΔBAD=ΔBED

=>AD=ED

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>E,D,F thẳng hàng

c: BA=BA

DA=DE

=>BD là trung trực của AE

AD=DE
DE<DC

=>AD<DC