Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
Bài 3:
Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
ta có AE=AB nên tam giác ABE cân ở A
mà AD là phân giác cuả góc BAE
suy ra AD là đương phân giác của tam giác ABE
do đó AD đồng thời là đường trung trực của BE
vậy ADvuoong góc với BE
Gọi giao điểm của AD và BE là O.
Xét tam giác AEO và tam giác ABO,có:
AE=AB (gt)
Góc EAO=Góc BAO (gt)
AO là cạnh chung
=> Tam giác AEO=Tam giác ABO (c.g.c)
=>Góc AOE= Góc ABO (2 góc tương ứng)
Ta có: Góc AOE + Góc AOB=180o (2 góc bù nhau)
Mà Góc AOE=Góc AOB (cmt)
=> Góc AOE = 90o
=> AD⊥BE tại O
Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: DB=DE
Ta có: AB=AE
nên A nằm trên đường trung trực của BE(1)
Ta có: DB=DE
nên D nằm trên đường trung trực của BE(2)
Từ (1) và (2) suy AD là đường trung trực của BE
hay AD\(\perp\)BE
Ta có:
AB = AE
=> Tam giác ABE cân tại A
Gọi I là giao điểm AD và BE
Xét tam giác ABI và tam giác AEI
AB = AE
Góc BAI = góc EAI
AD: cạnh chung
=> Tam giác ABI = tam giác AEI (c-g-c)
=> Góc AIB = góc AIE (góc tương ứng)
Mà góc AIB + góc AIE = 180 (kề bù)
=> AIB = AIE = 90
=> AD vuông góc với BE
Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
=>D nằm trên đường trung trực của BE(1)
Ta có: AB=AE
=>A nằm trên đường trung trực của BE(2)
Từ (1),(2) suy ra AD là đường trung trực của BE
=>AD\(\perp\)BE