K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

a)  Xét 2 tam giác vuông:  tam giác ABH  và   tam giác ACK  có:

AB = AC  (gt)

góc A   chung

suy ra:   tam giác ABH  =   tam giác ACK   (ch-gn)

b)  áp dụng định lí tổng 3 góc của tam giác vào tam giác vuông ABH ta có:

       góc BAH  +    góc ABH   =    90^0

=>   góc ABH  =   90^0  -  góc  BAH  

=>   góc ABH   =   90^0  -  50^0  =  40^0

Tam giác ABC cân tại A   =>  \(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}=65^0\)

=>    góc   HBC   =  25^0

Tương tự:  góc KCB  =   25^0

suy ra:  góc BOC  =  130^0

11 tháng 3 2018

c)  Trên tia đối  MK  lấy  F  sao cho  MF = MK

C/m: tam giác KMB = tam giác FMC  (c.g.c)

=>  MK = MF  =  1/2 KF

C/m: tam giác BKC  =   tam giác FCK  (c.g.c)

=>  BC  =  KF

mà KM = 1/2 KF

=>  KM = 1/2 BC

4 tháng 6 2020

a ) Ta có : 

+) \(AB< AC\) ( gt )  

 \(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )

+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABH+60+90=180\)

\(\Rightarrow ABH=30\)

b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt ) 

\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)

Mà \(ABH=30\) ( cmt ) 

\(\Rightarrow ABH=BAD\)

\(\Rightarrow ABH=BAI\)

Xét tam giác \(AIB\) và tam giác \(BHA\) có : 

\(AB\) chung 

\(AIB=BHA=90\)

\(BAI=ABH\)

\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g ) 

c ) Xét tam giác \(ABI\) có : 

\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABI+30+90=180\)

\(\Rightarrow ABI=60\)

\(\Rightarrow ABE=60\)                                 ( 1 ) 

 Xét tam giác \(ABE\) có : 

\(ABE+BAE+AEB=180\)  ( tổng ba góc trong một tam giác )

\(\Rightarrow60+60+AEB=180\)

\(\Rightarrow AEB=60\)                                  ( 2 ) 

Mà \(BAE=60\) ( gt )                         ( 3 )  

Từ ( 1 ) ; ( 2 ) ; ( 3 ) 

\(\Rightarrow\) tam giác \(ABE\) đều 

 
 
 
9 tháng 6 2020

Chứng minh câu d: 

A B C D H E I 1

Ta có: AE = AB < AC 

=> E thuộc canh AC 

\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE  (1)

Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED 

=> ^ABD = ^AED => ^B1 = ^DEC  ( góc ngoài ) 

mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B> ^C 

=> ^DEC > ^C = ^ECD 

Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2) 

Từ (1); (2) => DC > DB 

9 tháng 6 2016

Tam giác ABC cân tại A nên AB = AC , góc B = góc C 

Xét tam giác ABH và ACH có :

góc B = góc C ;    AB = AC      ;    Góc BAH = CAH ( vì AH là tia phân giác của góc A )

=>  tam giác ABH = tam giác ACH ( g.cg )

=> BH = CH ( hai cạnh tương ứng ) 

=> H là trung điểm của BC.  => AH là đường đường trung tuyến của tam giác ABC .

d, Vì  tam giác ABH = tam giác ACH => góc BHA = góc CHA  (1)       ( 2 góc tương ứng )

ta lại có : góc BHA + góc CHA  = 180 độ  (2)    ( hai góc kề bù ) 

Từ (1) và (2) suy ra góc BHA = góc CHA = 90 độ => tam giác AHB vuông tại H

áp dụng định lí Pytago cho tam giác vuông AHB ta có : \(AB^2=AH^2+HB^2\Rightarrow AH^2=AB^2-HB^2.\)

                                                                                      => \(AH=\sqrt{AB^2-HB^2}=\sqrt{13^2-5^2}=12\)(cm) 

9 tháng 6 2016
a) Vì ∆ABC cân tại Ạ => AB = AC ( tính chất ∆ cân ) Vì AH là tia phân giác của góc BAC => góc BAH = góc CAH Xét ∆ AHB và ∆ AHC có : +) AB = AC (cmt) +) Góc BAH = góc CAH (cmt) +) Ah chúng Từ đó suy ra ∆ABH = ∆ACH b) Vì ∆ABH = ∆ACH (cmt) => BH = CH ( hai cạnh tương ứng) c) Vì ∆ABC cân tại Ạ (gt) mà AH là đường phân giác của ABC => AH là đường trung tuyến của ∆ABC ( tính chất ∆ cân ) d) Vì AH là đường cao của ∆ABC ( chứng minh tương tự như chứng minh AH là đường trung tuyến của ∆ABC ) => Góc AHB = 90° => ∆ABH vuông tại H Xét ∆ABH vuông tại H có AB^2 = AH^2 + HB^2 ( Áp dụng định lý Pytago ) Thấy số vào ta sẽ tìm được AH = 12 cm
7 tháng 12 2016

Bài 1:

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(ĐL tổng 3 góc 1 \(\Delta\))

\(\Rightarrow30^o+70^o+\widehat{C}=180^o\) (Vì \(\widehat{A}=30^o;\widehat{B}=70^o\) (gt))

\(\Rightarrow\widehat{C}=180^o-30^o-70^o=80^o\)

Bài 2:

Xét \(\Delta ABC\) (vuông tại A) có:

\(\widehat{B}+\widehat{C}=90^o\) (Tc \(\Delta\) vuông)

\(\Rightarrow\widehat{B}+40^o=90^o\) (Vì \(\widehat{C}=40^o\) (gt))

\(\Rightarrow\widehat{B}=90^o-40^o=50^o\)

7 tháng 12 2016

Giải:

+) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( 3 góc của tam giác )

\(\Rightarrow30^o+70^o+\widehat{C}=180^o\)

\(\Rightarrow\widehat{C}=80^o\)

Vậy...

+) Ta có: \(\widehat{B}+\widehat{C}=90^o\) ( do tam giác có \(\widehat{A}=90^o\) )

\(\Rightarrow40^o+\widehat{B}=90^o\)

\(\Rightarrow\widehat{B}=50^o\)

Vậy...

11 tháng 1 2022

Answer:

Ta xét tam giác ABH (Góc AHB = 90 độ) và tam giác CAK (Góc CKA = 90 độ), có:

AB = AC

Góc A1 = góc C1

=> Tam giác ABH = tam giác CAK (cạnh huyền-góc nhọn)

=> BH = AK và AH = CK

\(\Rightarrow BH^2+CK^2=AK^2+CK^2=AC^2\) 

undefined

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B làA. 50° B. 60° C. 55° D. 75°Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A làA. 40° C. 15° C. 105° D. 30°Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:A MN^+ NP^= MP^B MP ^+NP^ =MN^C NM= NPD pN^+ MP^= MN^Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC làA. 17 cm B. 13 cm C. 14 cm D. 14,4 cmCâu 5. Cho tam giác...
Đọc tiếp

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B là
A. 50° B. 60° C. 55° D. 75°
Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A là
A. 40° C. 15° C. 105° D. 30°
Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:

A MN^+ NP^= MP^
B MP ^+NP^ =MN^
C NM= NP
D pN^+ MP^= MN^

Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC là
A. 17 cm B. 13 cm C. 14 cm D. 14,4 cm
Câu 5. Cho tam giác HIK vuông tại I, IH = 10 cm, HK = 16 cm. Độ dài cạnh IK là
A. 26 cm
B. \(\sqrt{156}cm\)
\(\sqrt{12}cm\)
 D. 156cm

Câu 6. Cho tam giác ABC cân tại A, AH vuông góc với BC tại H, AB = 10cm. BC = 12 cm.
Độ dài AH bằng
A. 6cm. B. 4 cm C. 8cm D. 64 cm
Câu 7. Cho tam giác đều ABC có độ dài cạnh là 6 cm. Kẻ AI vuông góc với BC. Độ dài cạnhAI là
A. \(3\sqrt{3}cm\)
B. 3 cm
C. \(3\sqrt{2}\)
D. 4 cm

Câu 8. Một chiếc tivi có chiều rộng là 30 inch, đường chéo là 50 inch. Chiều dài chiếc tivi đó là
A. 20 inch B. 1600 inch 3400 inch. D. 40 inch
Câu 9. Tam giác vuông là tam giác có độ dài ba cạnh là:
A. 3cm, 4cm,5cm B. 5cm, 7cm, 8cm C. 4cm, 6 cm, 8cm D. 3cm, 5cm, 7cm
Câu 10. Tam giác ABCcân tại A. Biết AH = 3cm, HC = 2 cm. Khi đó độ dài BC bằng

A. 5 cm
B. 4cm
C.\(2\sqrt{5}cm\)
\(2\sqrt{3}cm\)
Giups mik vs mik đg cần gấp

 

0
18 tháng 5 2017

hình bạn vẽ jum mik nha! Còn giờ mik giải bài 

a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông AEH có: 

AH: cạnh chung  

góc BAH= góc EAH (do AH là đường phân giác của tam giác ABC) 

Do đó: \(\Delta\)ABH=\(\Delta\)AEH (cgv-gn) 

b) Vì \(\Delta\)ABH= \(\Delta\)AEH (cmt) 

=> AB=AE (2 cạnh tương ứng) 

Xét \(\Delta\)ABM và\(\Delta\)AEM có: 

AB= AE (cmt) 

góc BAM= góc EAM ( do AM là đường phân giác của tam giác ABC) 

AM: cạnh chung  

Do đó: \(\Delta\)ABM=\(\Delta\)AEM ( c.g.c) 

=> góc ABM= góc AEM=90 độ 

=> ME vuông góc với AC 

c) Vì \(\Delta\)ABM= \(\Delta\)AEM (cmt) 

=> BM=EM=3 cm   

Ta có: \(\Delta\)MEC vuông tại E  

Theo định lí Py-ta-go , ta có: 

 MC\(^2\)= ME\(^2\)+EC\(^2\)

EC\(^2\)= MC\(^2\)- ME\(^2\)

EC\(^2\)= 5\(^2\)- 3\(^2\)=25-9=16 

EC = \(\sqrt{16}\)=4 cm 

d) Ta có : tam giác ABC vuông tại B 

=> góc C+ góc BAC = 90 độ 

    30 độ + góc BAC = 90 độ

 góc BAC= 90 độ -30 độ = 60 độ 

Xét tam giác ABE có AB=AE và góc BAC = 60 độ 

=> tam giác ABE đều 

=> góc BAE= góc ABE= góc AEB= 60 độ 

Ta có: góc BAE+ góc EBC= 90 độ 

 góc BAE + góc C =90 độ 

=> góc EBC = góc C 

=> tam giác BEC cân tại E