Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác vuông: tam giác ABH và tam giác ACK có:
AB = AC (gt)
góc A chung
suy ra: tam giác ABH = tam giác ACK (ch-gn)
b) áp dụng định lí tổng 3 góc của tam giác vào tam giác vuông ABH ta có:
góc BAH + góc ABH = 90^0
=> góc ABH = 90^0 - góc BAH
=> góc ABH = 90^0 - 50^0 = 40^0
Tam giác ABC cân tại A => \(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}=65^0\)
=> góc HBC = 25^0
Tương tự: góc KCB = 25^0
suy ra: góc BOC = 130^0
a ) Ta có :
+) \(AB< AC\) ( gt )
\(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )
+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )
\(\Rightarrow ABH+60+90=180\)
\(\Rightarrow ABH=30\)
b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt )
\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)
Mà \(ABH=30\) ( cmt )
\(\Rightarrow ABH=BAD\)
\(\Rightarrow ABH=BAI\)
Xét tam giác \(AIB\) và tam giác \(BHA\) có :
\(AB\) chung
\(AIB=BHA=90\)
\(BAI=ABH\)
\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g )
c ) Xét tam giác \(ABI\) có :
\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )
\(\Rightarrow ABI+30+90=180\)
\(\Rightarrow ABI=60\)
\(\Rightarrow ABE=60\) ( 1 )
Xét tam giác \(ABE\) có :
\(ABE+BAE+AEB=180\) ( tổng ba góc trong một tam giác )
\(\Rightarrow60+60+AEB=180\)
\(\Rightarrow AEB=60\) ( 2 )
Mà \(BAE=60\) ( gt ) ( 3 )
Từ ( 1 ) ; ( 2 ) ; ( 3 )
\(\Rightarrow\) tam giác \(ABE\) đều
Chứng minh câu d:
A B C D H E I 1
Ta có: AE = AB < AC
=> E thuộc canh AC
\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE (1)
Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED
=> ^ABD = ^AED => ^B1 = ^DEC ( góc ngoài )
mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B1 > ^C
=> ^DEC > ^C = ^ECD
Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2)
Từ (1); (2) => DC > DB
Tam giác ABC cân tại A nên AB = AC , góc B = góc C
Xét tam giác ABH và ACH có :
góc B = góc C ; AB = AC ; Góc BAH = CAH ( vì AH là tia phân giác của góc A )
=> tam giác ABH = tam giác ACH ( g.cg )
=> BH = CH ( hai cạnh tương ứng )
=> H là trung điểm của BC. => AH là đường đường trung tuyến của tam giác ABC .
d, Vì tam giác ABH = tam giác ACH => góc BHA = góc CHA (1) ( 2 góc tương ứng )
ta lại có : góc BHA + góc CHA = 180 độ (2) ( hai góc kề bù )
Từ (1) và (2) suy ra góc BHA = góc CHA = 90 độ => tam giác AHB vuông tại H
áp dụng định lí Pytago cho tam giác vuông AHB ta có : \(AB^2=AH^2+HB^2\Rightarrow AH^2=AB^2-HB^2.\)
=> \(AH=\sqrt{AB^2-HB^2}=\sqrt{13^2-5^2}=12\)(cm)
Bài 1:
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(ĐL tổng 3 góc 1 \(\Delta\))
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\) (Vì \(\widehat{A}=30^o;\widehat{B}=70^o\) (gt))
\(\Rightarrow\widehat{C}=180^o-30^o-70^o=80^o\)
Bài 2:
Xét \(\Delta ABC\) (vuông tại A) có:
\(\widehat{B}+\widehat{C}=90^o\) (Tc \(\Delta\) vuông)
\(\Rightarrow\widehat{B}+40^o=90^o\) (Vì \(\widehat{C}=40^o\) (gt))
\(\Rightarrow\widehat{B}=90^o-40^o=50^o\)
Giải:
+) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( 3 góc của tam giác )
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=80^o\)
Vậy...
+) Ta có: \(\widehat{B}+\widehat{C}=90^o\) ( do tam giác có \(\widehat{A}=90^o\) )
\(\Rightarrow40^o+\widehat{B}=90^o\)
\(\Rightarrow\widehat{B}=50^o\)
Vậy...
hình bạn vẽ jum mik nha! Còn giờ mik giải bài
a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông AEH có:
AH: cạnh chung
góc BAH= góc EAH (do AH là đường phân giác của tam giác ABC)
Do đó: \(\Delta\)ABH=\(\Delta\)AEH (cgv-gn)
b) Vì \(\Delta\)ABH= \(\Delta\)AEH (cmt)
=> AB=AE (2 cạnh tương ứng)
Xét \(\Delta\)ABM và\(\Delta\)AEM có:
AB= AE (cmt)
góc BAM= góc EAM ( do AM là đường phân giác của tam giác ABC)
AM: cạnh chung
Do đó: \(\Delta\)ABM=\(\Delta\)AEM ( c.g.c)
=> góc ABM= góc AEM=90 độ
=> ME vuông góc với AC
c) Vì \(\Delta\)ABM= \(\Delta\)AEM (cmt)
=> BM=EM=3 cm
Ta có: \(\Delta\)MEC vuông tại E
Theo định lí Py-ta-go , ta có:
MC\(^2\)= ME\(^2\)+EC\(^2\)
EC\(^2\)= MC\(^2\)- ME\(^2\)
EC\(^2\)= 5\(^2\)- 3\(^2\)=25-9=16
EC = \(\sqrt{16}\)=4 cm
d) Ta có : tam giác ABC vuông tại B
=> góc C+ góc BAC = 90 độ
30 độ + góc BAC = 90 độ
góc BAC= 90 độ -30 độ = 60 độ
Xét tam giác ABE có AB=AE và góc BAC = 60 độ
=> tam giác ABE đều
=> góc BAE= góc ABE= góc AEB= 60 độ
Ta có: góc BAE+ góc EBC= 90 độ
góc BAE + góc C =90 độ
=> góc EBC = góc C
=> tam giác BEC cân tại E
Trong tam giác ABH có ∠(BAC) + ∠(ABH) = 90o
⇒ ∠(ABH) = 90o - 65o = 25o
Chọn D