Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo đề bài ta có: MP || AC , Q thuộc AC => MP || AQ (1)
Tương tự : MQ || AB <=> MQ || AP (2)
Từ (1) và (2) suy ra APMQ là hình bình hành ( Dấu hiệu nhận biết hình bình hành )
b) Giả sử Tam giác ABC có góc A = 90độ .
=> APMQ là hình chữ nhật ( Dấu hiệu 3 : Hình bình hành có một góc vuông là hình chữ nhật - SGK/T97 )
c) Giả sử Tam giác ABC cân , AM vừa là đường trung tuyến vừa là đường phân giác hạ từ đỉnh A xuống cạnh đáy BC.
<=> AM cũng là đường chéo của hình bình hành APMQ
=> APMQ là hình thoi (Dấu hiệu 4:Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.)
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a, là hình bình hành
b, tam giác vuông A
c, chắc tam giác abc đều
trả lời cộc lốc như bạn thì hàng 100 câu trả lời nữa tôi cũng ko hiểu và đồng thời ko cần luôn
a) Vận dụng đinh lý 1 về đường trung bình của tam giác suy ra APMQ là hình thoi do có 4 cạnh bằng nhau.
b) Vì PQ ^ AM mà AM ^ BC (tính chất tamgiacs cân) nên PQ//BC.
a: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao và AM là phân giác của \(\widehat{BAC}\)
Xét tứ giác APMQ có
AP//MQ
AQ//MP
Do đó: APMQ là hình bình hành
Hình bình hành APMQ có AM là phân giác của góc PAQ
nên APMQ là hình thoi
b: Xét ΔABC có
M là trung điểm của BC
MP//AC
Do đó: P là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MQ//AB
Do đó: Q là trung điểm của AC
Xét ΔABC có
P,Q lần lượt là trung điểm của AB,AC
=>PQ là đường trung bình của ΔABC
=>PQ//BC
c: Xét ΔABC có M,Q lần lượt là trung điểm của CB,CA
=>MQ là đường trung bình của ΔABC
=>MQ//AB và \(MQ=\dfrac{AB}{2}\)
mà \(MQ=\dfrac{MD}{2}\)
nên MD=AB
MQ//AB
=>MD//AB
Xét tứ giác ABMD có
AB//MD
AB=MD
Do đó: ABMD là hình bình hành
d: Xét tứ giác AMCD có
Q là trung điểm chung của AC và MD
Do đó: AMCD là hình bình hành
Hình bình hành AMCD có \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
Hình chữ nhật AMCD muốn trở thành hình vuông thì CA là phân giác của góc MCD
=>\(\widehat{ACB}=\dfrac{1}{2}\cdot90^0=45^0\)
a: Xét tứ giác AEMF co
AE//MF
ME//FA
Do đó: AEMF là hình bình hành
b: Để AEMF là hình chữ nhật thì góc BAC=90 độ
c: Khi ΔBAC vuông cân tại A thì AB=AC và góc BAC=90 độ
=>AEMF là hình vuông
a: Xét tứ giác AEMF có
AE//MF
ME//AF
Do đó: AEMF là hình bình hành
mà \(\widehat{FAE}=90^0\)
nên AEMF là hình chữ nhật
a: Xét tứ giác APMQ có
AP//MQ
AQ//PM
Do đó: APMQ là hình bình hành