Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{OH}{AH}+\frac{OI}{BI}+\frac{OK}{CK}=\frac{\frac{OH.BC}{2}}{\frac{AH.BC}{2}}+\frac{\frac{OI.AC}{2}}{\frac{BI.AC}{2}}+\frac{\frac{OK.AB}{2}}{\frac{CK.AB}{2}}\)
\(=\frac{S_{BOC}}{S_{ABC}}+\frac{S_{COA}}{S_{ABC}}+\frac{S_{AOB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Ta có:
\(\dfrac{OH}{AH}+\dfrac{OI}{BI}+\dfrac{OK}{CK}=\dfrac{\dfrac{OH.BC}{2}}{\dfrac{AH.BC}{2}}+\dfrac{\dfrac{OI.AC}{2}}{\dfrac{BI.AC}{2}}+\dfrac{\dfrac{OK.AB}{2}}{\dfrac{CK.AB}{2}}\)
\(=\dfrac{S_{BOC}}{S_{ABC}}+\dfrac{S_{COA}}{S_{ABC}}+\dfrac{S_{AOB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1\)
Hok tốt
S = A B C 1 2 A H . B C = 1 2 A B . A C
Þ AH.BC = AB.AC (ĐPCM)
a: Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
b: Xét ΔABD và ΔCBE có
\(\widehat{ABD}=\widehat{CBE}\)(BE là phân giác của góc ABC)
\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔABD~ΔCBE