K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

a. AE = AF: 
Δ ABE = Δ ADF vì: 
AB = AD ( cạnh hình vuông) 
\(\widehat{DAF}=\widehat{BAE}\)( cùng phụ với DAE^) 
=> AE = AF 

b. Tứ gaíc EGFK là hình thoi 
EG // AB và AB // FK => EG // FK (*)

=>  \(\widehat{GEF}=\widehat{KFE}\)(1) ( so le trong) 
cm câu a) có AF = AE => trung tuyến AI củng là đường trung trực của EF => AI \(\perp\)EF 
theo giả thiết: IE = IF (2) 
(1) và (2) => Δ IKF = Δ IGE => FK = EG (**) 
(*) và (**) => EGFK là hình bình hành 
vì AI là trung trực của EF => EG = FG 
vậy hình bình hành EGFK là hình thoi. 

c. tam giác FIK đồng dạng tam giác FCE 
Δ FIK ~ Δ FEC vì: 
\(\widehat{F}\)chung 
\(\widehat{KIF}=\widehat{ECF}\) = 1v 

d. EK = BE + DK và khi E chuyển động trên BC thì chu vi tam giác ECK không đổi 
gọi cạnh hình vuông là a, ta có: 
CV = EC + CK + EK = (BC - BE) + (CD - DK) + (BE + DK) = BC + CD = 2a không đổi

5 tháng 12

MỌI NGƯỜI GIÚP MÌNH CÂU b VỚI Ạ!

qua đỉnh A hình bình hành ABCD vẽ đường thẳng d cắt BD, BC, CD lần lượt tại E, F, G. a. chứng minh rằng EA/EF = EG/EA b. xác định vị trí của đường thẳng d để tích EF.EG nhỏ nhất

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0