K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC đồng dạng với ΔDEF

=>AB/DE=BC/EF=AC/DF=k=1/3

=>3/DE=4/DF=1/3

=>DE=9cm; DF=12cm

ΔABC đồng dạng với ΔDEF

=>góc B=góc E=60 độ; góc C=góc F=30 độ

góc A=góc D=180-60-30=90 độ

\(\widehat{C'}=35^0\)

19 tháng 4 2020

a, 2 tam giác đồng dạng 

CM:

xét tam giác ta có:    \(2x+3x+4x=56\)(\(x\)là hệ số sao cho \(2x;3x;4x\)là ba cạnh của tam giác ABC)

=) \(x=6\)

tỉ lệ cạnh thì cậu chứng minh đc 2 tam giác đồng dạng nhé

b,vì hai tam đồng dạng nên 

\(\widehat{ABC}=\widehat{DEF}=45^O\)

\(\widehat{BAC}=\widehat{EDF}=105^O\)

tổng 3 góc trong tam giác =180o

thì tính đc \(\widehat{ACB}=\widehat{DFE}=30^O\)

19 tháng 4 2020

sao khi ra x=6 nhân vào 2x=2.6=12=AB

3x=3.6=18=AC

BC=4x=4.6=24

tỉ lệ cạnh \(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}\)

hay \(\frac{12}{3}=\frac{18}{4,5}=\frac{24}{6}\)

Xét ΔABC có BM là đường phân giác

nên AM/AB=CM/CB

=>AM/3=CM/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

Do đó: AM=1,5(cm)

Xét ΔABM vuông tại A và ΔDEF vuông tại D có 

AB/DE=AM/DF

Do đó: ΔABM\(\sim\)ΔDEF

30 tháng 9 2021

toi ko biet 

a: Xet ΔBAC có CE/CB=CF/CA

nên EF//AB

=>EF vuông góc AC

Xét ΔABD vuông tai B và ΔMED vuông tại E có

góc BAD=góc EMD

=>ΔABD đồng dạngvới ΔMED

c: DC/AC=BD/AB

DE/ME=DB/AB

=>DC/AC=DE/ME

=>DC*ME=AC*DE