Cho tam giác ABC đồng dạng với tam giác A'B'C' . Cho biết A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

+) Trong tam giác vuông A’B’C’ có \(\widehat{A'}=90^0\)

Áp dụng định lí Pi-ta-go, ta có:

A′B′2+A′C′2 =B′C′2

=> A′C′2=B′C′2−A′B′2=152−92=144

=> A’C’ =12 (cm)

Trong tam giác vuông ABC có \(\widehat{A}=90^0\)

Áp dụng định lí Pi-ta-go, ta có:

BC2=AB2+AC2= 62+82=100

Suy ra: BC = 10 (cm)

Ta có: \(\dfrac{A'B'}{AB}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\dfrac{A'C'}{AC}=\dfrac{12}{8}=\dfrac{3}{2}\)

\(\dfrac{B'C'}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)

Suy ra: \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=\dfrac{3}{2}\)

Vậy ∆ A’B’C’ đồng dạng với ∆ ABC

Trắc nghiệm1.\(\Delta A'B'C'\)~ \(\Delta ABC\)theo tỉ số đồng dạng k=\(\frac{3}{2}\).Gọi AM,A'M' lần lượt là các đường trung tuyến của \(\Delta ABC\)và \(\Delta A'B'C'\).Biết A'M'=15cm,độ dài AM là:A.6cm           B.10cm               C.12cm             D.22,5cm2.Chọn phát biểu đúng trong các phát biểu sau:A.Hai tam giác cân thì đồng dạng với nhauB.Hai tam giác đồng dạng thì bằng nhauC.Hai tam giác vuông...
Đọc tiếp

Trắc nghiệm

1.\(\Delta A'B'C'\)\(\Delta ABC\)theo tỉ số đồng dạng k=\(\frac{3}{2}\).Gọi AM,A'M' lần lượt là các đường trung tuyến của \(\Delta ABC\)và \(\Delta A'B'C'\).Biết A'M'=15cm,độ dài AM là:

A.6cm           B.10cm               C.12cm             D.22,5cm

2.Chọn phát biểu đúng trong các phát biểu sau:

A.Hai tam giác cân thì đồng dạng với nhau

B.Hai tam giác đồng dạng thì bằng nhau

C.Hai tam giác vuông cân thì đồng dạng với nhau

D.Hai tam giác vuông bất kì thì luôn đồng dạng

3.\(\Delta ABC\)\(\Delta DEF\)và \(\frac{S_{ABC}}{S_{DEF}}\)=\(\frac{4}{9}\).Tỉ số đồng dạng của chúng là:

A.3            B.\(\frac{1}{2}\)                  C.\(\frac{1}{4}\)            D.\(\frac{2}{3}\)

4.Cho \(\Delta ABC\)\(\Delta MNP\)sao cho \(\frac{S_{ABC}}{S_{MNP}}\)=9.Ta có:

A.\(\frac{AB}{MN}\)=9          B.\(\frac{AB}{MN}\)=\(\frac{1}{9}\)            C.\(\frac{AB}{MN}\)=3             D.\(\frac{AB}{MN}\)=\(\frac{1}{3}\)

0
27 tháng 5 2020

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Đẳng thức xảy ra khi tam giác đó là tam giác đều