Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC và tam giác OMN có
^BAC = ^MON = 900
ACON=BCMN=84=105=2ACON=BCMN=84=105=2
Vậy tam giác ABC ~ tam giác OMN
b, ABOM=BCMN=ACONABOM=BCMN=ACON( tỉ số đồng dạng )
a)
Tính AB:
AB2 = BC2 + AC2
AB2 = 164
AB = \(\sqrt{164}\)= 12,8
Tính OM
OM2 = MN2 + ON2
OM2 = 41
OM = \(\sqrt{41}\)= 6,4
b)
Xét \(\Delta ABC\)và \(\Delta OMN\):
\(\widehat{A}\)= \(\widehat{O}\)= 90o
\(\frac{BC}{MN}\)= \(\frac{AC}{ON}\)= 2
\(\Rightarrow\) \(\Delta ABC\)~ \(\Delta OMN\) \(\Leftrightarrow\) \(\frac{AB}{OM}\)= \(\frac{BC}{MN}\)= \(\frac{AC}{ON}\)= 2
A B C 6 8 H E D F K
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^AHB = 900
^B chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
b, Xét tam giác AHB và tam giác CHA ta có :
^AHB = ^CHA = 900
^ABH = ^HAC ( cùng phụ với ^BAH )
Vậy tam giác AHB ~ tam giác CHA ( g.g )
\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\)
a) Xét \(\Delta ABH\)có BI là phân giác của \(\widehat{ABH}\)(vì BD là phân giác của \(\widehat{ABC}\))
\(\Rightarrow\frac{IA}{IH}=\frac{BA}{BH}\)(tính chất)
\(\Rightarrow IA.BH=IH.AB\)(diều phải chứng minh)
Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{CBA}\)chung.
\(\Rightarrow\Delta ABC\approx\Delta HBA\left(g.g\right)\)(điều phải chứng minh)