Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Có \(b^2+c^2-a^2=cosA.2bc\)
\(S=\dfrac{1}{2}bc.sinA\)\(\Rightarrow4S=2bc.sinA\)
\(\Rightarrow\dfrac{b^2+c^2-a^2}{4S}=\dfrac{cosA.2bc}{2bc.sinA}=cotA\) (dpcm)
b) CM tương tự câu a \(\Rightarrow\dfrac{a^2+c^2-b^2}{4S}=\dfrac{cosB.2ac}{2ac.sinB}=cotB\); \(\dfrac{a^2+b^2-c^2}{4S}=\dfrac{cosC.2ab}{2ab.sinC}=cotC\)
Cộng vế với vế \(\Rightarrow cotA+cotB+cotC=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}+\dfrac{a^2+b^2-c^2}{4S}\)\(=\dfrac{a^2+b^2+c^2}{4S}\) (dpcm)
c) Gọi ma;mb;mc là độ dài các đường trung tuyến kẻ từ đỉnh A;B;C của tam giác ABC
Có \(GA^2+GB^2+GC^2=\dfrac{4}{9}\left(m_a^2+m_b^2+m_b^2\right)\)\(=\dfrac{4}{9}\left[\dfrac{2\left(b^2+c^2\right)-a^2}{4}+\dfrac{2\left(a^2+c^2\right)-b^2}{4}+\dfrac{2\left(b^2+c^2\right)-a^2}{4}\right]\)
\(=\dfrac{4}{9}.\dfrac{3\left(a^2+b^2+c^2\right)}{4}=\dfrac{a^2+b^2+c^2}{3}\) (đpcm)
d) Có \(a\left(b.cosC-c.cosB\right)=ab.cosC-ac.cosB\)
\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}\)
\(=b^2-c^2\) (dpcm)
A C B M G
a)Theo bài ra => Tam giác ABC vuông cân ở A
M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm
=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)
Giả sử A có tọa độ (a;b)
=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)
b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC
Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC
=>phương trình đường thẳng BC:
1(x-1)-3(y+1)=0
hay x-3y-4=0
=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)
=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC
MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)
=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)
=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)
=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)
TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)
TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)
c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)
Phương trình đường tròn ngoại tiếp tam giác ABC:
(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)
a/ \(b^2-c^2=ab.cosC-ac.cosB\)
Ta có: \(b.cosC-c.cosB=ab.\dfrac{a^2+b^2-c^2}{2ab}-ac.\dfrac{a^2+c^2-b^2}{2ac}\)
\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}=\dfrac{2b^2-2c^2}{2}=b^2-c^2\) (đpcm)
b/ \(ac.cosC-ab.cosB=ac.\dfrac{a^2+b^2-c^2}{2ab}-ab.\dfrac{a^2+c^2-b^2}{2ac}\)
\(=\dfrac{c^2\left(a^2+b^2-c^2\right)-b^2\left(a^2+c^2-b^2\right)}{2bc}=\dfrac{\left(ac\right)^2-\left(ab\right)^2+b^4-c^4}{2bc}\)
\(=\dfrac{-a^2\left(b^2-c^2\right)+\left(b^2-c^2\right)\left(b^2+c^2\right)}{2bc}=\left(b^2-c^2\right).\dfrac{\left(b^2+c^2-a^2\right)}{2bc}\)
\(=\left(b^2-c^2\right).cosA\) (đpcm)
c/ \(cotA+cotB+cotC=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}+\dfrac{cosC}{sinC}=\dfrac{2R.cosA}{a}+\dfrac{2R.cosB}{b}+\dfrac{2R.cosC}{c}\)
\(=2R\left(\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\right)\)
\(=2R\left(\dfrac{a^2+b^2+c^2}{2abc}\right)=\dfrac{a^2+b^2+c^2}{abc}.R\) (đpcm)
a, 3 đường trung tuyến cách nhau tại trọng tâm, khoảng cách từ trọng tâm đến đỉnh bằng \(\dfrac{2}{3}\) độ dài trung tuyến đi qua đỉnh đó
Từ định lí trên ta có \(\left\{{}\begin{matrix}m_a=\dfrac{2}{3}GA\\m_b=\dfrac{2}{3}GB\\m_c=\dfrac{2}{3}GC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m_a^2=\dfrac{4}{9}GA^2\\m_b^2=\dfrac{4}{9}GB^2\\m_c^2=\dfrac{4}{9}GB^2\end{matrix}\right.\)
Đặt D = GA2 + GB2 + GC2
⇒ D = ma2 + mb2 + mc2
⇒ D = \(\dfrac{2\left(a^2+b^2\right)-c^2+2\left(b^2+c^2\right)-a^2+2\left(a^2+c^2\right)-b^2}{4}\)
⇒ D = \(\dfrac{a^2+b^2+c^2}{3}\)
b, cotA = \(\dfrac{cosA}{sinA}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}}{\dfrac{a}{2R}}=R.\dfrac{b^2+c^2-a^2}{abc}\)
Tương tự ta có
cotB = \(R.\dfrac{a^2+c^2-b^2}{abc}\)
cotC = \(R.\dfrac{a^2+b^2-c^2}{abc}\)
Vậy cotA + cotB + cotC = \(R.\dfrac{a^2+b^2+c^2}{abc}\) (1)
Theo công thức tính diện tích
S = \(\dfrac{abc}{4R}\) ⇒ abc = 4 . S . R
Thế vào (1) ta có
cotA + cotB + cotC = \(R.\dfrac{a^2+b^2+c^2}{4.S.R}=\dfrac{a^2+b^2+c^2}{4S}\)
a, \(\overrightarrow{GA}=-\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(\Rightarrow GA^2=\dfrac{1}{9}\left(AB^2+AC^2+2AB.AC.cosA\right)\)
\(=\dfrac{1}{9}\left(c^2+b^2+2bc.cosA\right)\)
\(=\dfrac{1}{9}\left(c^2+b^2+b^2+c^2-a^2\right)=\dfrac{2b^2+2c^2-a^2}{9}\)
Tương tự \(GB^2=\dfrac{2a^2+2c^2-b^2}{9}\); \(GC^2=\dfrac{2a^2+2b^2-c^2}{9}\)
\(\Rightarrow GA^2+GB^2+GC^2=\dfrac{a^2+b^2+c^2}{3}\)
b, \(cotA+cotB+cotC=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}+\dfrac{cosC}{sinC}\)
\(=\dfrac{b^2+c^2-a^2}{2bcsinA}+\dfrac{a^2+c^2-b^2}{2acsinB}+\dfrac{a^2+b^2-c^2}{2absinC}\)
\(=\dfrac{b^2+c^2-a^2}{2bcsinA}+\dfrac{a^2+c^2-b^2}{2ac.\dfrac{b}{a}sinA}+\dfrac{a^2+b^2-c^2}{2ab.\dfrac{c}{a}sinA}\)
\(=\dfrac{a}{2sinA}\left(\dfrac{b^2+c^2-a^2}{abc}+\dfrac{a^2+c^2-b^2}{abc}+\dfrac{a^2+b^2-c^2}{abc}\right)\)
\(=\dfrac{a^2+b^2+c^2}{2bcsinA}=\dfrac{a^2+b^2+c^2}{4.S}\)