K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

A B C M N P I

Trên nửa mặt phẳng bờ AM không chứa điểm B, dựng \(\Delta\)AMP sao cho \(\Delta\)AMP ~ \(\Delta\)ABC

Định nghĩa tương tự với điểm N. Gọi phân giác của ^ABM cắt AM tại I.

Từ \(\Delta\)AMP ~ \(\Delta\)ABC ta có tỉ số \(\frac{AM}{AB}=\frac{AP}{AC}\)hay \(\frac{AP}{AM}=\frac{AC}{AB}\) 

Đồng thời ^MAP = ^BAC => ^PAC = ^MAB. Từ đó \(\Delta\)APC ~ \(\Delta\)AMB (c.g.c)

Suy ra ^APC = ^AMB => ^APM + ^MPC = ^AMB => ^MPC = ^AMB - ^APM = ^AMB - ^ACB (1)

Lập luận tương tự ta có ^MNB = ^AMC - ^ANM = ^AMC - ^ABC (2)

Từ (1) và (2), kết hợp với giả thiết ^AMB - ^C = ^AMC - ^B suy ra ^MPC = ^MNB

Ta lại có ^PMC = ^AMC - ^AMP = ^AMC - ^ABC = ^AMB - ^ACB = ^AMB - ^AMN = ^NMB

Do vậy \(\Delta\)BNM ~ \(\Delta\)CPM (g.g) => \(\frac{BM}{CM}=\frac{MN}{MP}\)

Mặt khác \(\Delta\)ANM ~ \(\Delta\)AMP (~\(\Delta\)ABC) => \(\frac{MN}{PM}=\frac{AN}{AM}=\frac{AB}{AC}\)

Từ đây \(\frac{BM}{CM}=\frac{AB}{AC}\) hay \(\frac{BA}{BM}=\frac{CA}{CM}\). Theo ĐL đường phân giác trong tam giác có:

\(\frac{BA}{BM}=\frac{IA}{IM}\). Do đó \(\frac{CA}{CM}=\frac{IA}{IM}\)=> CI là phân giác của ^ACM

Điều này tức là phân giác của ^ABM và ^ACM cắt nhau tại điểm I nằm trên AM => ĐPCM.

5 tháng 7 2019

Học thêm toán hình tại đây nè..

a: Xét ΔMAB có MI là phân giác

nên AI/IB=AM/MB=AM/MC

Xét ΔAMC có MK là phân giác

nên AK/KC=AM/MC

=>AI/IB=AK/KC

=>IK//BC

b: Xét ΔABM có IO//BM

nên IO/BM=AO/AM

Xét ΔACM có OK//MC
nên OK/MC=AO/AM

=>IO/BM=OK/MC

mà BM=CM

nên IO=OK

Xet ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔMAC có ME là phân giác

nên AE/EC=AM/MC

=>AD/DB=AE/EC

=>DE//BC

=>ΔADE đồng dạng với ΔABC