K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

A B M I K C D

a, Xét △ABC có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)

\(\Rightarrow45^o+70^o+\widehat{ACB}=180^o\)

\(\Rightarrow\widehat{ACB}=65^o\)

b, Xét △ABM và △DCM

Có: MA = MD (giả thiết)

     \(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

      \(BM=MC\)(M là trung điểm của BC)

=> △ABM = △DCM (c.g.c)

=> \(\widehat{ABC}=\widehat{MCD}\)(2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // CD

c, Xét △IMB và △KMC

Có:  \(\widehat{IMB}=\widehat{CMK}\) (đối đỉnh)

        BM = MC (gt)

    \(\widehat{ABC}=\widehat{MCD}\)(cmt)

=> △IMB = △KMC (g.c.g)

=> MI = MK (2 cạnh tương ứng)

Mà M nằm giữa I, K

=> M là trung điểm của IK

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

29 tháng 12 2021

b: Xét tứ giác ABKC có

M là trung điểm của BC

M là trung điểm của AK

Do đó: ABKC là hình bình hành

Suy ra: AC//BK

29 tháng 12 2021

đang cần câu D nhé

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :a) BH song song CIb) BH = AIc) Tam giác HMI vuông cân2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BCa) CM : Tam giác AMB = Tam giác AMCb) Trên tia đối của tia MA lấy điểm N sao cho M là...
Đọc tiếp

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :

a) BH song song CI

b) BH = AI

c) Tam giác HMI vuông cân

2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC

a) CM : Tam giác AMB = Tam giác AMC

b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC

c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.

3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE

a) CM : DE vuông góc BE

b) CM : BE là đường trung trực của AE.

c) Kẻ AH vuông góc BC. So sánh AH và EC

GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!

2
7 tháng 8 2020

KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA

A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)

         \(CI\perp AD\Rightarrow\widehat{CID}=90^o\)

\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU 

=> BH // CI (ĐPCM)

B) 

XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)

XÉT \(\Delta AHB\)VUÔNG TẠI H

\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)

từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)

XÉT \(\Delta ABH\)\(\Delta CAI\)

\(\widehat{H}=\widehat{I}=90^o\)

AB = AC (gt)

\(\widehat{ABH}=\widehat{IAC}\)(CMT)

=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)

=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )

7 tháng 8 2020

Ai giúp mk vs ạ

20 tháng 3 2020

A B C M H I 1 2 2 1

a,Xét tam giác AIH và tam giác MHI có

IH  là cạnh chung

H2^=I1^(MI//AC)

H1^=I2^(MH//AB)

=> tam giác AIH = tam giác MHI(g.c.g)

a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có

BH chung

AH=DH(H là trung điểm của AD)

Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)

⇒AB=DB(hai cạnh tương ứng)(1)

Xét ΔAMB và ΔEMC có 

AM=EM(M là trung điểm của AE)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔEMC(c-g-c)

⇒AB=EC(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra BD=CE(đpcm)

b) Ta có: ΔABH=ΔDBH(cmt)

nên \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)

hay \(\widehat{ABC}=\widehat{DBC}\)

mà tia BC nằm giữa hai tia BA,BD

nên BC là tia phân giác của \(\widehat{ABD}\)(đpcm)

c) Xét ΔACH vuông tại H và ΔDCH vuông tại H có

CH chung

AH=DH(H là trung điểm của AD)

Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)

⇒CA=CD(hai cạnh tương ứng)

Ta có: BA=BD(cmt)

nên B nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: CA=CD(cmt)

nên C nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra BC là đường trung trực của AD(đpcm)

d) Xét ΔBME và ΔCMA có 

BM=CM(M là trung điểm của BC)

\(\widehat{BME}=\widehat{CMA}\)(hai góc đối đỉnh)

ME=MA(M là trung điểm của AE)

Do đó: ΔBME=ΔCMA(c-g-c)

⇒BE=CA(hai cạnh tương ứng)

Xét ΔABC và ΔECB có 

BC chung

AB=EC(cmt)

CA=BE(cmt)

Do đó: ΔABC=ΔECB(c-c-c)

Bài 1 :Trên cùng nửa mặt phẳng có chứa đoạn AB ,kẻ tia Mx sao cho góc AMx = 60 độ và tia My sao cho góc BMy = 60 độ . Trên Mx lấy điểm C sao cho MC = MA . Trên tia My lấy điểm D sao cho MD=MBa)Chứng minh AD=CBb)Lấy điểm E là trung điểm của AD . F là trung điểm của CB . Chứng minh EMF = 60 độBài 2 : C thuộc MN . Ix là đường trung trực của đoạn MC ( I thuộc MC), KI là đường trung trực của đoạn CN ( K...
Đọc tiếp

Bài 1 :Trên cùng nửa mặt phẳng có chứa đoạn AB ,kẻ tia Mx sao cho góc AMx = 60 độ và tia My sao cho góc BMy = 60 độ . Trên Mx lấy điểm C sao cho MC = MA . Trên tia My lấy điểm D sao cho MD=MB

a)Chứng minh AD=CB

b)Lấy điểm E là trung điểm của AD . F là trung điểm của CB . Chứng minh EMF = 60 độ

Bài 2 : C thuộc MN . Ix là đường trung trực của đoạn MC ( I thuộc MC), KI là đường trung trực của đoạn CN ( K thuộc CN) .Kẻ đường thẳng d đi qua C cắt Ix tại E và cắt KI tại F . Chứng minh ME//MF

Bài 3 :Cho tam giác ABC ( góc A < 90 độ ) . TẠi A kẻ Ã vuông góc với AC , M thuộc Ax sao cho AM=AC . M,B thuộc 2 nửa mặt phẳng đối nhau bờ AC . Tại A kẻ Ay vuông góc với AB , n thuộc Ay sao cho AN = AB ( N,C thuộc 2 nửa mặt phẳng đối nhau bờ AB )

a) chứng minh tam giác ABM = tam giác ANC

b) BM=CN

c) Bm vuông góc với CN

BÀI 4 Tam giác ABC , M là trung điểm của AB , N là trung điểm của AC . Trên tia đối của tia MN lấy điểm P sao cho NP = MN

a) tam giác AMN = tam giác CPN

b) CP = BM

c) MN//BC

d) nhận sét gì về MN so với BC

BÀi 5 cho tam giác ABC . từ C kẻ CX // với AB . Trên cạnh Ab lấy điểm M . Trên tia Cx lấy điểm N sao cho AM=CN. Nối MN cắt AC tại D

a) chứng minh OA=OC , OM =ON

b) Nối BO tia BO cắt Cx tại P . Chứng minh AB = CD

Các bạn giải được bài nào thì giải bài đấy cho mình nhé , mình cần gấp lắm rùi . Thank nha

1
9 tháng 12 2015

đừng có ns lung tung bọn mik muốn làm đó

5 tháng 2 2018

Chọn  D