Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M B → = 1 3 M C → ⇔ 3 M B → = M C → ⇔ 3 B M → = C M →
A M → = A B → + B M → ⇒ 3 A M → = 3 A B → + 3 B M → ( 1 ) A M → = A C → + C M → ( 2 )
Lấy (1) trừ (2) ta được :
2 A M → = 3 A B → + 3 B M → − A C → + C M → = 3 A B → − A C → + ( 3 B M → − C M → ) = 3 A B → − A C → + 0 → = 3 A B → − A C → ⇒ A M → = 3 2 A B → − 1 2 A C → = 3 2 u → − 1 2 v →
Đáp án A
a: \(\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\overrightarrow{CB}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\overrightarrow{u}-\overrightarrow{v}\)
Lời giải:
Tam giác $BCD$ có $K$ là trọng tâm, ta có công thức quen thuộc sau:
$\overrightarrow{KB}+\overrightarrow{KC}+\overrightarrow{KD}=\overrightarrow{0}$
Lại có:
$\overrightarrow{KD}=\overrightarrow{KA}+\overrightarrow{AD}$
$\overrightarrow{KD}=\overrightarrow{KC}+\overrightarrow{CD}$
$\Rightarrow 2\overrightarrow{KD}=\overrightarrow{KA}+\overrightarrow{KC}+(\overrightarrow{AD}+\overrightarrow{CD})=\overrightarrow{KA}+\overrightarrow{KC}$
(do $\overrightarrow{AD}, \overrightarrow{CD}$ là 2 vecto đối nhau)
Do đó:
$\overrightarrow{KB}+\overrightarrow{KC}+\frac{\overrightarrow{KA}+\overrightarrow{KC}}{2}=\overrightarrow{0}$
$\Leftrightarrow \overrightarrow{KA}=-2\overrightarrow{KB}-3\overrightarrow{KC}$
$\Rightarrow \overrightarrow{AK}=2\overrightarrow{KB}+3\overrightarrow{KC}$
\(5\overrightarrow{JB}=2\overrightarrow{JC}=2\left(\overrightarrow{JB}+\overrightarrow{BC}\right)=2\overrightarrow{JB}+2\overrightarrow{BC}\)
\(\Rightarrow\overrightarrow{JB}=\dfrac{2}{3}\overrightarrow{BC}=2\overrightarrow{BA}+2\overrightarrow{AC}\Rightarrow\overrightarrow{BJ}=2\overrightarrow{AB}-2\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}=\overrightarrow{AB}+2\overrightarrow{AB}-2\overrightarrow{AC}=3\overrightarrow{AB}-2\overrightarrow{AC}\)
a: \(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)
mấy cái BC,K,KC,KB,AB,AC,AK,u,v là vec tơ nhé mọi người