K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
22 tháng 4 2021
a) Xét tứ giác ABHK có
\(\widehat{AHB}=\widehat{AKB}\left(=90^0\right)\)
\(\widehat{AHB}\) và \(\widehat{AKB}\) là hai góc cùng nhìn cạnh AB
Do đó: ABHK là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
NT
1 tháng 3 2016
a)Gọi I là trung điểm của tam giác BC
Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC
=>IE=ID=IB=IC
=> tứ giác BCDE nội tiếp. tâm đường tròn là I
b)AFK=90 ( dg cao thứ 3)
ACK=90 (chắn nữa dg tròn)
=>AFB=ACK
c)BD vg góc với AC
ACK=90 =>CK vg góc với AC
=>CK song song với BH
tuong tu CH song song voi BK
=>BHCK là hinh binh hanh
*vì I là trung điểm của BC
=>I cung la trung diem cua HK
=>H,I,K thang hang
hình tự vẽ. ( có tham khảo )
Gọi E và F là chân đường vuông góc từ I xuống AB,AC
gọi M,N,P,Q lần lượt là trung điểm của BC,IA,IB,IC
\(\Delta BIE\)vuông tại E có EI là trung tuyến nên EI = \(\frac{1}{2}IB\)
mà MQ là đường trung bình \(\Delta BIC\)nên MQ = \(\frac{1}{2}IB\)
\(\Rightarrow EI=MQ\)
tương tự : QF = MP
CM : MPIQ là hình bình hành \(\Rightarrow\widehat{MPI}=\widehat{IQM}\)( 1 )
mặt khác : \(\widehat{EPI}=2\widehat{ABI}\); \(\widehat{FQI}=2\widehat{ACI}\)
\(\Rightarrow\widehat{EPI}=\widehat{FQI}\)( 2 )
Cộng ( 1 ) với ( 2 ) ta được : \(\widehat{EPM}=\widehat{MQF}\)
CM : \(\Delta MPE=\Delta FQM\left(c.g.c\right)\)\(\Rightarrow\)ME = MF
dễ thấy tứ giác AEIF nội tiếp đường tròn tâm N đường kính IA nên NE = NF
\(\Rightarrow MN\perp EF\)
mà BICK là hình bình hành nên M là giao điểm BC và IK \(\Rightarrow\)M là trung điểm IK
\(\Delta AIK\)có MN là đường trung bình nên MN // AK
\(\Rightarrow AK\perp EF\)
gọi J là giao điểm của AK với đường tròn ( N ; IA/2 ) rồi cm : \(\widehat{EAI}=\widehat{FAJ}\)
vậy ta có điều phải chứng minh
e vẽ cái hình cho mọi người dễ nhìn nhé.