K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

ΔABD vuông tại D

=>BD<AB

ΔACE vuông tại E

=>CE<AC

=>BD+CE<AB+AC

ΔAED vuông tại E

=>AD là cạnh lớn nhất trong ΔAED
=>AD>AE

Ta có: ΔCFD vuông tại F

=>CD là cạnh lớn nhất trong ΔCFD

=>CD>CF

Ta có: AD>AE

CD>CF

Do đó: AD+CD>AE+CF

=>AC>AE+FC

19 tháng 3 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+ AE là đường vuông góc hạ từ đỉnh A xuống đường thẳng BF

⇒ AE < AD. ( quan hệ đường vuông góc và đường xiên). (1)

+ CF là đường vuông góc hạ từ đỉnh C xuống đường thẳng BF

⇒ CF < CD ( quan hệ đường vuông góc và đường xiên). (2)

Từ (1) và (2) vế cộng vế ta được: AE + CF < AD + CD = AC.

Trong ∆ADE ta có góc AED = 90∘

Nên AE < AD (1)

Trong ∆CFD ta có góc CFD = 90∘

Nên CF < CD (2)

Cộng từng vế (1) và (2) ta có:

AE + CF < AD + CD

Mà D nằm giữa A và C nên AD + CD = AC

Vậy AE + CF < AC

4 tháng 10 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trong ΔABM, ta có ∠(BAM) = 90o

Suy ra: AB < BM (trong tam giác vuông cạnh huyền lớn nhất)

Mà BM = BE + EM = BF - MF

Suy ra: AB < BE + EM

AB < BF - FM

Suy ra:AB + AB < BE + ME + BF - MF (1)

Xét hai tam giác vuông AEM và CFM, ta có:

∠(AEM) = ∠(CFM) = 90o

AM = CM (gt)

∠(AME) = ∠(CMF) (đối đỉnh)

Suy ra: ΔAEM = ΔCFM (cạnh huyền - góc nhọn)

Suy ra: ME = MF (2)

Từ (1) và (2) suy ra: AB + AB < BE + BF

Suy ra: 2AB < BE + BF

Vậy AB < (BE + BF) / 2 .

8 tháng 5 2020

Trong ∆ADE ta có \(\widehat {A{\rm{ED}}} = 90^\circ \)

Nên AE < AD            (1)

Trong ∆CFD ta có \(\widehat {CF{\rm{D}}} = 90^\circ \)

Nên  CF  < CD         (2)

Cộng từng vế (1) và (2) ta có:

AE + CF  < AD + CD

Mà D nằm giữa A và C nên AD + CD = AC

Vậy AE + CF < AC

8 tháng 5 2020

Trong ∆ADE ta có góc AED = 90∘

Nên AE < AD (1)

Trong ∆CFD ta có góc CFD = 90∘

Nên CF < CD (2)

Cộng từng vế (1) và (2) ta có:

AE + CF < AD + CD

Mà D nằm giữa A và C nên AD + CD = AC

Vậy AE + CF < AC

a: Xét ΔAME vuông tại E và ΔCMF vuông tại F có

MA=MC

góc AME=góc CMF

=>ΔAME=ΔCMF

b: BE+BF=2BE+EF

=2BE+2ME

=2BM>2BA

=>AB<(BE+BF)/2