Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC và DE=BC/2
=>DE//BF và DE=BF
=>BDEF là hình bình hành
b: Xét ΔBAC có BD/BA=BF/BC
nên DF//AC và DF=AC/2
=>DF=EK
Xét tứ giác DEFK cos
DE//FK
DF=EK
Do đó: DEFK là hình thang cân
a: Xét tứ giác AHBK có
M là trung điểm của AB
M là trung điểm của HK
Do đó: AHBK là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBK là hình chữ nhật
b:
Xét tứ giác AKHC có
AK//HC
AK=HC
Do đó: AKHC là hình bình hành
c: Xét ΔABC có
N là trung điểm của AC
H là trung điểm của BC
Do đó: NH là đường trung bình
=>NH//AB và NH=AB/2
hay NH//AM và NH=AM
=>AMHN là hình bình hành
mà AM=AN
nên AMHN là hình thoi
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
b: Xét tứ giác NKIM có
D là trung điểm của NI
D là trung điểm của KM
Do đó: NKIM là hình bình hành
mà NI vuông góc với KM
nên NKIM là hình thoi
c: Xét ΔABC có DN//AB
nên DN/AB=CN/CA=CD/CB
=>CN=1/2CA
hay N là trung điểm của AC
Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2
hay BM=1/2BA
=>M là trung điểm của AB
Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên MA=MH
Ta có: ΔAHC vuông tại H
mà HN là đừog trung tuyến
nên HN=AN
Xét ΔMAN và ΔMHN có
MA=MH
AN=HN
MN chung
Do đó: ΔMAN=ΔMHN
Suy ra:góc MHN=90 độ
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\)
mà \(BH=CH=\dfrac{BC}{2}\)
nên NM=BH=CH
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{MBC}=\widehat{NCB}\)
nên BMNC là hình thang cân
Xét tứ giác MNHB có
MN//BH
MN=BH
Do đó: MNHB là hình bình hành
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến ứng với cạnh đáy BC
nên AH\(\perp\)BC
Xét tứ giác AHCD có
N là trung điểm của đường chéo AC
N là trung điểm của đường chéo HD
Do đó: AHCD là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCD là hình chữ nhật
a:
Sửa đề: MBKC
Xét ΔBDC có BM/BD=BN/BC
nên MN//CD
Xét tứ giác MBKC có
N là trung điểm chung của MK và BC
=>MBKC là hình bình hành
b: Xét tứ giác AMNH có MN//AH
nên AMNH là hình thang
Xét ΔDBC có DM/DB=DH/DC=1/2
nên MH//BC
=>MH/BC=DM/DB=1/2
=>MH=1/2BC
ΔABC vuông tại A có AN là trung tuyến
nên AN=1/2BC
=>AN=MH
=>AMNH là hình thang cân
c: MN=1/2DC
DH=1/2DC
=>MN=DH
mà MN//DH
nên MNHD là hình bình hành
Bài 1:
a: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình
=>DE//BC
hay DE//HM
Xét ΔABC có
D là trung điểm của AB
M là trung điểm của BC
Do đó: DM là đường trung bình
=>DM=AC/2(1)
Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến
nên HE=AC/2(2)
Từ (1) và (2) suy ra DM=HE
Xét tứ giác DEMH có DE//HM
nên DEMH là hình thang
mà DM=HE
nên DEMH là hình thang cân
b: Xét tứ giác AKBH có
D là trung điểm của AB
D là trung điểm của HK
Do đó: AKBH là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AKBH là hình chữ nhật