K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2021

a) Gọi O là trung điểm của BC.

Ta có \(\stackrel\frown{BD}=\stackrel\frown{DE}=\stackrel\frown{EC}\Rightarrow\widehat{BOD}=\widehat{DOE}=\widehat{EOC}=60^o\).

Từ đó CE // AB, BD // AC.

Suy ra \(\Delta ABN\sim\Delta ECN\).

b) Theo tính đối xứng ta có BM = CN.

Ta có \(\dfrac{BN}{NC}=\dfrac{AB}{CE}=\dfrac{AB}{CO}=2\Rightarrow BN=2NC\Rightarrow MN=NC\).

Dễ dàng suy ra đpcm.

30 tháng 1 2016

 tam giac abd bằng tam giac ace (c.g.c)

nên góc bad=góc cae

tam giac abi=tam giac acj(g,c,g)

nên bi=cj(1)

gọi o là trung điểm bc

vì góc oda=góc bad(=60-góc adb)

nên od//ab nên \(\frac{oi}{ib}=\frac{od}{ab}=\frac{od}{2ob}=\frac{1}{2}\)

nên oi=\(\frac{1}{2}\)ib hay 2oi=ib

nên ij=ib(2)

từ (1) và (2) suy ra bi=ij=jc

 

 

29 tháng 5 2018

A B O C D M N H K E

a) Xét \(\Delta\)NKD và \(\Delta\)MKC: ^NKD = ^MKC (Đối đỉnh); ^DNK = ^CMK (Cùng chắn cung CD)

=> \(\Delta\)NKD ~ \(\Delta\)MKC (g.g) (đpcm).

b) Ta thấy: N là điểm chính giữa của cung AD => \(\Delta\)AND cân tại N => ^NAD = ^NDA

Tứ giác CAND nội tiếp đường tròn (O) => ^NAD = ^NCD; ^NDA = ^NCA.

Mà ^NAD=^NDA (cmt) => ^NCD = ^NCA => CN là phân giác ^ACD.

Tương tự ta chứng minh được: DM là phân giác ^ADC

Do DM giao CN tại K nên K là tâm đường tròn nội tiếp \(\Delta\)CAD => AK là phân giác ^CAD

Hay AE là phân giác ^CAD => ^CAE = ^DAE.

Xét tứ giác ACED nội tiếp (O) => ^CAE = ^CDE; ^DAE = ^DCE

=> ^CDE = ^DCE => \(\Delta\)DEC cân tại E => EC=ED. Mà CD là dây cung của (O)

=> OE vuông góc CD (đpcm).

c) Ta thấy ^CKM là góc ngoài của \(\Delta\)CKD => ^CKM = ^KCD + ^KDC = 1/2 (^ACD + ^ADC) (1)

Ta có: ^MCK = ^ACM + ^ACK. Mà ^ACM = ^ADM (Cùng chắn cung AM) => ^MCK = ^ADM + ^ACK

=> ^MCK = 1/2(^ADC + ^ACD) (2)

Từ (1) và (2) => ^CKM = ^MCK => \(\Delta\)CMK cân tại M => MC=MK=MA

=> M nằm trên trung trực của AK

Lập luận tương tự: NA=NK => N nằm trên trung trực của AK

=>  MN là đường trung trực của AK . Lại có H thuộc MN

=> ^NKH = ^NAH. Mà ^NAH = ^NMC (=^NAC) nên ^NKH = ^NMC.

Xét \(\Delta\)NHK và \(\Delta\)NCM: ^NKH = ^NMC; ^MNC chung => \(\Delta\)NHK ~ \(\Delta\)NCM (g.g)

\(\Delta\)AHK cân tại H => ^HAK = ^HKA. Do AK là phân giác ^CAD => ^HAK = ^KAD

=> ^HKA = ^KAD. Vì 2 góc này so le trg nên HK // AD (đpcm).

d) Nhận xét: \(\Delta\)AMK có AM=KM (cmt)

=> \(\Delta\)AMK là tam giác đều khi ^AMK=600 hay ^AMD=600

Mà ^AMD = ^ACD (Cùng chắn cung AD) => Để \(\Delta\)AMK đều khi ^ACD=600 

Vậy 2 điểm C và D di động trên đường tròn (O) sao cho ^ACD=600 thì \(\Delta\)AMK là tam giác đều.