Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham Khảo
3. Cho hình bình hành ABCD có AC > BD. Gọi H, K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và AD. Cmr
CH/CB=CK/CD
Tam giác CHK đồng dạng tam giác BCA
AB.AH + AD.AK= AC x AC
bài làm
Số chia hết cho 2 và chia cho 5 dư 3 thì chữ số tận cùng là 8. Ta được a678
Để a678 chia hết cho 9 thì a=6
Số cần tìm là: 6678
ĐS: 6678
Gọi T là giao điểm của DE và AB. Qua F kẻ đường thẳng song song với BC cắt DA, DT lần lượt tại U, V.
Áp dụng định lý Menelaus cho tam giác ABC, cát tuyến TED, ta có:
\(\dfrac{TA}{TB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)
Áp dụng định lý Ceva cho tam giác ABC với AD, BE, CF đồng quy tại O, ta có:
\(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)
Từ đó suy ra \(\dfrac{TA}{TB}=\dfrac{FA}{FB}\Leftrightarrow\dfrac{TA+FA}{TB}=\dfrac{2FA}{TB}\) \(\Leftrightarrow\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)
Mà theo định lý Thales:
\(\dfrac{TF}{TB}=\dfrac{FV}{BD}\) và \(\dfrac{AF}{AB}=\dfrac{FU}{BD}\)
Từ đó suy ra \(\dfrac{FV}{BD}=\dfrac{2FU}{BD}\) \(\Rightarrow FV=2FU\) hay U là trung điểm FV.
Áp dụng bổ đề hình thang, ta dễ dàng suy ra O là trung điểm MN hay \(OM=ON\) (đpcm).
(Bổ đề hình thang phát biểu như sau: Trung điểm của 2 cạnh đáy, giao điểm của 2 đường chéo và giao điểm của 2 đường thẳng chứa 2 cạnh bên của một hình thang thì thẳng hàng. Chứng minh khá dễ, mình nhường lại cho bạn tự tìm hiểu nhé.)
Chỗ biến đổi này mình làm lại nhé:
Cần chứng minh: \(\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)
\(\Leftrightarrow TF.AB=2AF.TB\)
\(\Leftrightarrow\left(TA+AF\right)\left(AF+BF\right)=2AF\left(TA+AF+BF\right)\)
\(\Leftrightarrow TA.AF+TA.BF+AF^2+AF.BF=2TA.AF+2AF^2+2AF.BF\)
\(\Leftrightarrow TA.AF+AF^2+AF.FB=TA.BF\)
\(\Leftrightarrow AF\left(TA+AF+FB\right)=TA.BF\)
\(\Leftrightarrow AF.TB=TA.BF\)
\(\Leftrightarrow\dfrac{TA}{TB}=\dfrac{FA}{FB}\) (luôn đúng)
Vậy \(\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)
Ta có: ^MPB = ^ACB = 600 => ^MPB = ^ABC hay ^MPB = ^NBP
Xét tứ giác BNMP có: MN // BP và ^MPB=^NBP => Tứ giác BNMP là hình thang cân
=> NP = BM. Tương tự: 2 tứ giác AQMN & CPMQ là htc => NQ=AM; PQ=CM
Ta thấy: \(\Delta\)NPQ là tam giác đều <=> NP=NQ=PQ <=> BM=AM=CM
<=> Điểm M cách đều 3 đỉnh A;B;C của \(\Delta\)ABC <=> M là tâm của tam giác đều ABC
Vậy khi M là tâm của \(\Delta\)ABC thì \(\Delta\)NPQ đều.