K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2022
1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0
23 tháng 4 2021

A B C N M E D H I O 1 1 1

1. Do BD , CE là đường cao của tam giác ABC nên \(\widehat{BDC}=90^o\)và \(\widehat{BEC}=90^o\)

Vì E , D nằm cùng 1 phía trên nửa mặt phẳng có bờ là đường thẳng BC nên tứ giác BCDE nội tiếp trong đường trong đường kính BC

2. Trên cung tròn đường kính BC ta có : \(\widehat{D_1}=\widehat{C_1}\)( cùng chắc cung \(\widebat{BE}\))

Trên đường tròn (O) , ta có : \(\widehat{M_1}=\widehat{C_1}\)( cùng chắn cung \(\widebat{BN}\))

Suy ra : \(\widehat{D_1}=\widehat{M_1}\Rightarrow MN//DE\)( do có 2 góc đồng vị bằng nhau )

3. Gọi H là trực tâm của tam giác ABC và I là trung điểm của BC.

Xét tứ giác ADHE có \(\widehat{AEH}=90^o\)( do CE vuông AB )

                                 \(\widehat{ADH}=90^o\)( do BD vuông AC )

\(\Rightarrow\widehat{AEH}+\widehat{ADH}=180^O\)nên tứ giác ADHE nội tiếp đường tròn đường kính AH

Vậy đường tròn ngoại tiếp tam giác ADE là đường tròn đường kính AH , có bán kính bằng \(\frac{AH}{2}\)

Kẻ đường kính AK của đường tròn (O) , ta có : 

\(\widehat{KBA}=90^o\)( góc nội tiếp chắn nửa đường tròn (O) )

\(\Rightarrow KB\perp AB\)

mà \(CE\perp AB\left(gt\right)\)nên KB // CH (1)

Chứng minh tương tự ta có KC // BH (2)

Từ (1) và (2) => BKCH là hình bình hành

Vì I là trung điểm của BC suy ra I cũng là trung điểm của KH . Mặt khác ta có O là trung điểm của AK nên \(OI=\frac{AH}{2}\). Do BC cố định nên I cố định suy ra Oi không đổi

Vậy khi điểm A di động trên cung lớn BC thì độ dài bán kính đường tròn ngoại tiếp tam giác ADE luôn không đổi 

Do tứ giác BCDE nội tiếp nên \(\widehat{ADE}=\widehat{ABC}\)( tính chất góc ngoài bằng góc trong đối diện ) (3)

Xét 2 tam giác ADE và ABC ta có \(\widehat{DAE}=\widehat{BAC}\), kết hợp với (3) ta có 2 tam giác này đồng dạng 

\(\Rightarrow\frac{S_{\Delta ADE}}{S_{\Delta ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\cos\widehat{DAB}\right)^2=\left(\cos\widehat{CAB}\right)^2\)

Do BC cố định nên cung nhỏ BC không đổi suy ra số đô góc CAB không đổi . Vậy để SADE đạt giá trị lớn nhất thì SABC cũng phải đạt giá trị lớn nhất . Điều này xảy ra khi và chỉ khi A là điểm chính giữa cung lớn BC

1: I là tâm đường tròn nội tiếp

QB=QC

=>QB=QI

=>ΔQBI cân tạiQ

2: Xet ΔAMI và ΔANI có

góc AMI=góc ANI

góc MAI=góc NAI

AI chung

=>ΔAMI=ΔANI

=>góc AMN=góc ANM=90 độ-1/2*góc ABC và AM=AN

=>góc EMB=góc NMB=90 độ+1/2*gócc ABC

góc IBC=1/2*góc ABC

góc ICB=góc ACB/

=>góc EIB+góc EMB=180 độ

=>ĐPCM

19 tháng 6 2023

               loading...

a, Xét tam giác vuông EBC vuông tại E và  CI = IB

 ⇒ IE = IC = IB (1) ( vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

Xét tam giác vuông BCF vuông tại F và IC =IB 

 ⇒IF = IC = IB (2) (vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền) 

Từ (1) và (2) ta có: 

IE = IF = IB = IC 

Vậy bốn điểm B, C, E, F cùng thuộc một đường tròn tâm I bán kính bằng \(\dfrac{1}{2}\) BC (đpcm)

b, Xét \(\Delta\)AFC và \(\Delta\)AEB có:

\(\widehat{CAF}\)  chung ; \(\widehat{AFC}\) = \(\widehat{AEB}\) = 900 

⇒ \(\Delta\)AFC  \(\sim\) \(\Delta\)AEB   (g-g)

⇒ \(\dfrac{AF}{AE}\) = \(\dfrac{AC}{AB}\) (theo định nghĩa hai tam giác đồng dạng)

⇒AB.AF = AC.AE (đpcm)

Xét tam giác vuông AEH vuông tại E và KA = KH 

⇒ KE = KH ( vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

\(\Delta\)EKH cân tại K ⇒ \(\widehat{KEH}\) = \(\widehat{EHK}\) 

\(\widehat{EHK}\) = \(\widehat{DHB}\) (vì hai góc đối đỉnh)

 ⇒ \(\widehat{KEH}\) = \(\widehat{DHB}\) ( tc bắc cầu) (3)

Theo (1) ta có: IE = IB ⇒ \(\Delta\) IEB cân tại I 

⇒ \(\widehat{IEB}\) = \(\widehat{IBE}\)  (4)

Cộng vế với vế của (3) và(4)

Ta có: \(\widehat{KEI}\) = \(\widehat{KEH}\) + \(\widehat{IEB}\) =  \(\widehat{DHB}\) + \(\widehat{IBE}\)  = \(\widehat{DHB}\) + \(\widehat{DBH}\)

        Vì tam giác DHB vuông tại D nên \(\widehat{DHB}\) + \(\widehat{DBH}\)  = 1800 - 900 = 900

 ⇒\(\widehat{KEI}\)  = 900

         IE \(\perp\) KE (đpcm)