K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018
https://i.imgur.com/78MNQDu.jpg
30 tháng 4 2018

Cậu giải đc câu b chưa

Nếu chưa thì nói tớ sẽ cố gắg giúp nha

9 tháng 3 2018

A B C P Q M 60 O 1 2 3 1 1

Tam giác ABC đều

=> \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

Xét ΔBMC có

\(\widehat{B}+\widehat{P1}+\widehat{M2}=180^o\) (đl tổng 3 góc trong tam giác)

=> \(60^0+\widehat{P1}+\widehat{M2}=180^o\)

=>\(\widehat{P1}+\widehat{M2}=120^o\) (1)

ta có \(\widehat{M1}+\widehat{M2}+\widehat{M3}=180^o\)(kề bù )

=>\(60^o+\widehat{M2}+\widehat{M3}=180^0\)

=>\(\widehat{M2}+\widehat{M3}=120^o\) (2)

từ (1) và (2)

=> \(\widehat{P1}=\widehat{M3}\)

Xét ΔPBM và ΔMCQ có

\(\widehat{B}=\widehat{C}=60^o\)(cmt)

\(\widehat{P1}=\widehat{M3}\) (cmt)

=> ΔPBM ∼ ΔMCQ (đpcm)

9 tháng 3 2018

hình chỉ mang tính tương đới OkeyMan

27 tháng 6 2018

Hình tự vẽ nhá 

Vì tam giác ABC cân tại A nên:

\(\widehat{B}=\widehat{C}\)

Mà \(\widehat{B}=\widehat{DME}\)

Suy ra: \(\widehat{C}=\widehat{DME}\)

Mặt khác: \(\widehat{BME}=\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{C}\)(góc ngoài của tam giác MEC)

Suy ra: \(\widehat{BMD}=\widehat{MEC}\)

Xét tam giác BMD và tam giác CEM có:

\(\widehat{B}=\widehat{C}\)(gt)

+\(\widehat{BMD}=\widehat{MEC}\)(cmt)

Do đó: \(\Delta BMD~\Delta CEM\)(g.g)

Suy ra: \(\frac{BM}{CE}=\frac{BD}{CM}\Leftrightarrow BM\cdot CM=CE\cdot BD\)

Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi

Vậy BD.CE không đổi

1 tháng 12 2018

ý c nhé, a và b dễ tự làm nhé:

https://vn.answers.yahoo.com/question/index?qid=20110323013140AAJ5GpF

15 tháng 2 2020

Xét ΔABC có:

+ M∈BC, N∈AB (giả thiết)

+ MN//AC

=> \(\frac{AN}{AB}=\frac{MC}{BC}\)(định lý Talet) (1)

Xét ΔABC có:

+ M∈BC, P∈AC (giả thiết)

+ MP//AB (giả thiết)

=> \(\frac{AP}{AC}=\frac{MB}{BC}\)(định lý Talet) (2)

Từ (1) và (2) =>\(\frac{AN}{AB}+\frac{AP}{AC}=\frac{MC}{BC}+\frac{MB}{BC}=\frac{BC}{BC}=1\)

14 tháng 2 2020

Hay chứng minh \(\frac{AN}{AB}+\frac{AP}{AC}=1\)?

21 tháng 5 2017

câu a.chứng minh cho tam giác BDM đồng dạng với tam giác CEM (g.g)

=> BD/BM=EC/CM

mà BM=CM( vì M là trung điểm của BC)

=> BD/BM=EC/BM

=> BM2=BD*EC

1 tháng 5 2018

a)chứng minh cho tam giác BDM đồng dạng với tam giác CEM (g.g)

=> BD/BM=EC/CM

mà BM=CM( vì M là trung điểm của BC)

=> BD/BM=EC/BM

=> BM2=BD x EC

22 tháng 2 2018

Qua D vẽ DH // với AC  ( H thuộc BC )

ta có tam giác BDH ~ tam giác BAC

suy ra BD/DH=AB/AC

áp dụng dlý talét vào tam giác KDH ta có

KE/KD=CE/DH

mà CE=BD 

suy ra KE/KD=BD/DH=AB/ACdpcm