Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ HN//CM
Xét ΔAMC có HN//CM
nên AH/AM=AN/AC=1/3=HN/CM
=>AH=1/3AM=1/3*2/3*AB=2/9*AB
AH=2/9AB
=>BH/AB=7/9
mà BM/AB=1/3
nên BM/BH=1/3:7/9=1/3*9/7=3/7
Xét ΔBHN có MK//HN
nên MK/HN=BM/BH=3/7
=>MK=3/7HN=3/7*1/3*CM=1/7*CM
=>CK/CM=6/7
S AMC=2/3*S ABC
=>S AKC=6/7*2/3*S ABC=4/7*S ABC
A B C M N P I D E Q
*) Bài toán thuận:
Qua N kẻ đường thẳng song song với AB cắt cạnh BC ở điểm P, nối PM.
Gọi D; E lần lượt là trung điểm của AB và AC. I là trg điểm MN.
Ta có: NP // AB => ^NPC=^ABC (Đồng vị). Mà ^ABC = ^ACB => ^NPC = ^ACB = ^NCP
=> \(\Delta\)PNC cân tại N => CN=PN. Lại có: AM=CN => AM=PN
Xét tứ giác AMPN: AM=PN; AM // PN => Tứ giác AMPN là hình bình hành
Thấy I là trung điểm của đường chéo MN => I cũng là trung điểm của AP.
Xét \(\Delta\)PAC: I và E lần lượt là trg điểm của AP và AC => EI là đường trung bình \(\Delta\)PAC
=> IE // PC hay IE // BC. Tương tự ID//BC => D;I;E thẳng hàng (Tiên đề Ơ-clit)
=> I nằm trên đường trung bình DE của \(\Delta\)ABC cố định.
*) Bài toán đảo: Cho tam giác ABC cân A có M và N thuộc AB và AC sao cho AM=CN. MN cắt đường trung bình DE của tam giác ABC ở điểm I. CMR I là trung điểm của MN ?
Qua M kẻ đường thẳng // AC cắt DE tại Q .
Ta có: AB=AC => 1/AAB=1/2AC => AD=CE. Mà AM=CN => AD-AM = CE - CN => DM=EN
Dễ thấy \(\Delta\)DMQ cân tại M => DM=QM => QM=EN.
Xét \(\Delta\)MIQ và \(\Delta\)NIE: ^IMQ=^INE; ^IQM=^IEN (Do MQ//AC); QM=EN
=> \(\Delta\)MIQ=\(\Delta\)NIE (g.c.g) => IM=IN (2 cạnh tương ứng) => I là trung điểm MN (đpcm).
*) Vậy khi 2 điểm M và N di động trên AB và AC sao cho AM=CN thì trung điểm của MN luôn chạy trên đường trung bình của tam giác ABC.
a: Xét ΔAPE và ΔACP có
góc APE=góc ACP
góc PAE chung
=>ΔAPE đồng dạng với ΔACP
=>AP^2=AE*AC=AN^2
Xét ΔAND và ΔABN có
góc AND=góc ABN
góc NAD chung
=>ΔAND đồng dạng với ΔABN
=>AD*AB=AN^2
=>AD*AB=AE*AC
=>AD/AC=AE/ABB
=>ΔADE đồng dạng vơi ΔACB
=>góc ADE=góc ACB
b: góc ADE=góc ACB
=>góc BDE+góc BCE=180 độ
=>BDEC nội tiếp
a. Gọi G là trung điểm AD
Tam giác ABC đều \(\Rightarrow\widehat{B}=\widehat{C}=60^0\)
\(CD=BC-BD=40\left(cm\right)\)
Trong tam giác vuông BDI:
\(sinB=\dfrac{ID}{BD}\Rightarrow DI=BD.sinB=20.sin60^0=10\sqrt{3}\left(cm\right)\)
\(cosB=\dfrac{IB}{BD}\Rightarrow IB=BD.cosB=20.cos60^0=10\left(cm\right)\)
Trong tam giác vuông CDK:
\(sinC=\dfrac{DK}{CD}\Rightarrow DK=CD.sinC=40.sin60^0=20\sqrt{3}\left(cm\right)\)
\(cosC=\dfrac{KC}{CD}\Rightarrow KC=CD.cosC=40.cos60^0=20\left(cm\right)\)
b. Gọi M là trung điểm BC \(\Rightarrow BM=CM=\dfrac{1}{2}BC=30\left(cm\right)\)
\(DM=BM-BD=10\left(cm\right)\) ; \(AM=\dfrac{AB\sqrt{3}}{2}=30\sqrt{3}\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ADM:
\(AD=\sqrt{AM^2+DM^2}=20\sqrt{7}\left(cm\right)\)
\(AG=DG=\dfrac{AD}{2}=10\sqrt{7}\left(cm\right)\)
\(AI=AB-BI=50\left(cm\right)\)
Hai tam giác vuông AEG và ADI đồng dạng (chung góc \(\widehat{IAD}\))
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AG}{AI}\Rightarrow AE=\dfrac{AG.AD}{AI}=28\left(cm\right)\)
Do EG là trung trực AD \(\Rightarrow DE=AE=28\left(cm\right)\)
Tương tự ta có \(AK=AC-CK=40\left(cm\right)\)
Hai tam giác vuông AGF và AKD đồng dạng
\(\Rightarrow\dfrac{AG}{AK}=\dfrac{AF}{AD}\Rightarrow AF=\dfrac{AG.AD}{AK}=35\left(cm\right)\)
\(\Rightarrow DF=AF=35\left(cm\right)\)
\(EF=EG+FG=\sqrt{AE^2-AG^2}+\sqrt{AF^2-AG^2}=7\sqrt{21}\left(cm\right)\)