Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}
““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}
a: Xét ΔABC có
E là trung điểm của AC
ED//AB
Do đó: D là trung điểm của BC
Xét ΔABC có
E là trung điểm của AC
EF//BC
Do đó: F là trung điểm của AB
Xét ΔABC có
F là trung điểm của AB
E là trung điểm của AC
Do đó: FE là đường trung bình của ΔBAC
Suy ra: FE//BD và FE=BD
hay FEDB là hình bình hành
a) Do D, E đối xứng qua AB nên tam giác EKD cân tại K.
Do EDFG là hình bình hành nên \(\widehat{KED}=180^o-\widehat{EDF}=180^o-\left(180^o-30^o-30^o\right)=60^o\)
Vậy KDE là tam giác đều.
b) Câu này phải ta KDFG mới là hình thang cân.
Ta có KDFG đã là hình thang.
Lại có \(\widehat{GFD}=\widehat{KED}\) ( Hai góc đối của hình bình hành)
và \(\widehat{KED}=\widehat{EKD}\) (tam giác KDE đều) và \(\widehat{EKD}=\widehat{KDF}\) (so le trong)
Vậy nên \(\widehat{GFD}=\widehat{KDF}\)
Vậy KDFG là hình thang cân (Hai góc kề một đáy bằng nhau)
c) Gọi I, J là giao điểm của DF và KG với AC.
Ta có ngay I là trung điểm DF nên J cũng là trung điểm KG.
Từ đó ta có \(\Delta AJK=\Delta AJG\) (Hai cạnh góc vuông)
\(\Rightarrow\widehat{GAC}=\widehat{KAJ}=60^o=\widehat{ACB}\)
Vậy AG // BC.
30o lấy đâu ra vậy
Chỉ mình với :))