K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

A B C D E M

a) Hai tam giác ACE và BAD có:

\(\hept{\begin{cases}AC=BA\\\widehat{ACE}=\widehat{BAD}=60^o\\CE=AD=2BC\end{cases}}\)

Nên \(\Delta ACE=\Delta BAD\)

Suy ra AE=BD

b) Tam giác ABC đều nên \(\widehat{ABC}=\widehat{BAC}=60^o\)

Suy ra \(\widehat{ABE}=180^o-\widehat{ABC}=180^o-60^o=120^o\)

Lại có BE=BC=BA  nên tam giác ABE cân tại B. Do đó, 

\(\widehat{EAB}=\frac{180^o-\widehat{ABE}}{2}=30^o\)

Do đó: \(\widehat{EAD}=\widehat{EAB}+\widehat{BAD}=30^o+60^o=90^o\)

Vậy tam giác EAD vuông tại A.

c)  Tam giác ACE vuông tại A có:

\(\hept{\begin{cases}AC=3cm\\CE=2BC=6cm\end{cases}}\)

nên: \(AE=\sqrt{CE^2-AC^2}=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)

Tam giác EAD vuông tại A có:

\(\hept{\begin{cases}AE=3\sqrt{3}\left(cm\right)\\AD=2BC=6\left(cm\right)\end{cases}}\)

Nên: \(DE=\sqrt{AE^2+AD^2}=\sqrt{27+36}=3\sqrt{7}\left(cm\right)\)

d) Tam giác BCD cân tại C có CM là đường phân giác nên CM cũng là đường cao của tam giác BCD. Do đó, \(CM\perp BD\)

Lại có: \(\Delta ACE=\Delta BAD\)nên\(\Delta ABD=\Delta CAE=90^o\)

Suy ra \(AB\perp BD\)

Vậy CM//AB  (cùng vuông góc với BD).

e) Tam giác ABC đều nên \(\widehat{ACB}=60^o\Rightarrow\widehat{BCD}=120^o\)

Mà CM là phân giác của \(\widehat{BCD}\)nên \(\widehat{BCM}=60^o\)

Tam giác BMC vuông tại M có\(\widehat{BCM}=60^o\)

Nên: \(CM=\frac{BC}{2}=\frac{3}{2}=1,5\left(cm\right)\)

13 tháng 2 2018

cảm ơn bạn nha

13 tháng 2 2018

bn tự vẽ hình nha,mik lm đc câu a thôi

a,Xét \(\Delta\) ACE và \(\Delta\)BAC

có : \(AC=AB\)

\(\widehat{ACE}=\widehat{BAD}=60^o\)

\(CE=AD=2BC\)

\(\Rightarrow\)\(\Delta\)ACE = \(\Delta\)BAC(c - g - c)

\(\Rightarrow\)AE = BD (2 cạnh tương ứng)

14 tháng 2 2018

Hướng dẫn

a) Xét tam giác CAE và tam giác ABD

b) chứng minh góc EAD = 90 độ

+ góc BAC = 60 độ

+ chỉ cần chứng minh góc EAB = 30 độ nữa là dc

c) Áp dụng Py-ta-go

27 tháng 2 2020
https://i.imgur.com/njkTQ1D.jpg
26 tháng 4 2019

a) AC = ? 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta có:

AC2 = AB2 + BC2

        = 52 + 122 = 25 + 144 = 169 

⇒ AC = 13 (cm)

b) ΔEAD cân

Xét hai tam giác vuông ABE và DBE có:

AB = BD (gt)

BE là cạnh chung

Do đó: ΔABE = ΔDBE (hai cạnh góc vuông)

⇒ EA = ED (hai cạnh tương ứng)

⇒ ΔEAD cân tại E.

c) K là trung điểm của DC.

Ta có: BE = 4, BC = 12 

⇒ BE = 1/3 BC 

Hay E là trọng tâm của ΔACD.

⇒ AE là đường trung tuyến ứng với cạnh DC

⇒ K là trung điểm của DC.

d) AD < 4EK 

Ta có: EA > AB, ED > BD

Mà AD = AB + BD,     AE = ED (câu b)

⇒ 2AE > AD 

Và EK = 1/2EA , nhân 2 vế cho 4. Ta được: 4EK = 2EA 

Vì 2AE > AD (cmt), 4EK = 2EA ⇒ 4EK > AD (đpcm)

26 tháng 4 2019

B A D C E

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0