Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Về bài hóa, bạn lên h.vn để hỏi nhé.
Mình làm 2 bài toán.
Bài 2 :
A B C D
DE // AC \(\Rightarrow\frac{AE}{AB}=\frac{CD}{BC}\)( Định lý Ta-lét)
DF//AB \(\Rightarrow\frac{AF}{AC}=\frac{BD}{CD}\)(Định lý Ta-lét)
\(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BC}{BC}=1\)
Vậy ....
Kẻ DI // BK (I thuộc AC)
\(BD=\frac{3}{4}BC\Rightarrow\frac{BD}{BC}=\frac{3}{4}\)
\(\hept{\begin{cases}AE+ED=AD\\AE=\frac{1}{3}AD\end{cases}\Rightarrow}\hept{\begin{cases}AE=\frac{1}{3}AD\\ED=\frac{2}{3}AD\end{cases}\Rightarrow}\frac{AE}{ED}=\frac{1}{2}\)
Ta có: \(\frac{AK}{CK}=\frac{AK}{KI}.\frac{KI}{KC}=\frac{AE}{ED}.\frac{BD}{BC}=\frac{1}{2}.\frac{3}{4}=\frac{3}{8}\)
Trả lời............
Kẻ đường thẳng DI song song với BK (I thuộc AC)
BD = 3/4 BC suy ra BD/BC=3/4
AE + ED=AD (1)
AE=1/3 AD
Suy ra AE=1/3 AD ; ED = 2/3 AD suy ra AE/ED = 1/2 (2)
Từ (1) và (2) ta suy ra được :
AK/CK = AK/KI . KI/KC = AE/ED . BD/BC = 1/2 . 3/4=3/8
..............học tốt............
a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{4}=\dfrac{CD}{6}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{4}=\dfrac{CD}{6}=\dfrac{AD+CD}{4+6}=\dfrac{AC}{10}=\dfrac{5}{10}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{4}=\dfrac{1}{2}\\\dfrac{CD}{6}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=2\left(cm\right)\\CD=3\left(cm\right)\end{matrix}\right.\)
Vậy: AD=2cm; CD=3cm