Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)Xét \(\Delta ADB\)và \(\Delta BFE\)có :
\(AB=BE\left(gt\right)\)
\(\widehat{DAB}=\widehat{FBE}\)( hai góc đồng vị )
\(AD=BF\left(=\frac{1}{2}AC\right)\)
\(\Rightarrow\Delta ADB=\Delta BFE\left(c.g.c\right)\)
\(\Rightarrow EF=BD\)( hai cạnh tương ứng )
\(b,\)Trong \(\Delta AEC\)có \(AB=BE\left(gt\right)\)và \(AD=DC\left(gt\right)\)
\(\Rightarrow BD\)là đường trung bình của \(\Delta AEC\)
\(\Rightarrow BD=\frac{1}{2}EC\)
Mà \(BD=EF\Rightarrow EF=\frac{1}{2}EC\)
Hay F là trung điểm EC ( đpcm )
a) Xét ΔADC và ΔEDB có
\(\widehat{ACD}=\widehat{EBD}\)(hai góc so le trong, AC//BE)
DC=DB(D là trung điểm của BC)
\(\widehat{ADC}=\widehat{EDB}\)(hai góc đối đỉnh)
Do đó: ΔADC=ΔEDB(g-c-g)
a, xét tam giác ABD và tam giác AED có : AD chung
^BAD = ^EAD do AD là pg của ^BAC (gt)
AB = AE (gt)
=> tam giác ABD = tam giác AED (c-g-c)
b, tam giác ABD = tam giác AED (câu a)
=> ^ABD = ^AED (đn)
^ABD + ^DBF = 180
^AED + ^DEC = 180
=> ^DBF = ^DEC
xét tam giác FBD và tam giác CED có : BF = EC (gt)
DB = DE do tam giác ABD = tam giác AED (câu a)
=> tam giác FBD = tam giác CED (c-g-c)
c, tam giác FBD = tam giác CED (câu b)
=> ^BDF = ^EDC (đn)
B;D;C thẳng hàng => ^BDE + ^EDC = 180
=> ^BDE + ^BDF = 180
=> E;D;F thẳng hàng
d, AB = AE (gt) => A thuộc đường trung trực của BE (tc)
BD = DE (câu b) => D thuộc đường trung trực của BE (Tc)
=> AD là đường trung trực của BE
e, DF = DC do tam giác BDF = tam giác EDC (Câu b)
=> tam giác DFC cân tại D (đn)
=> ^DCF = (180 - ^FDC) : 2 (tc)
DB = DE (câu b) => tam giác DEB cân tại D (đn) => ^EBD = (180 - ^BDE) : 2 (tc)
^FDC = ^BDE (đối đỉnh)
=> ^DCF = ^EBD mà 2 góc này slt
=> BE // CF