Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAED và ΔCEF có
EA=EC(E là trung điểm của AC)
\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)
ED=EF(gt)
Do đó: ΔAED=ΔCEF(c-g-c)
⇒AD=CF(hai cạnh tương ứng)
mà AD=BD(D là trung điểm của AB)
nên CF=BD(đpcm)
Ta có: ΔAED=ΔCEF(Cmt)
nên \(\widehat{ADE}=\widehat{CFE}\)(hai góc tương ứng)
mà \(\widehat{ADE}\) và \(\widehat{CFE}\) là hai góc ở vị trí so le trong
nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song)
hay CF//AB(đpcm)
a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm) a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm)
a) Xét tg ADE và CFE, có :
AE=EC(gt)
ED=EF(gt)
\(\widehat{AED}=\widehat{FEC}\left(đđ\right)\)
=> Tg ADE=CFE (c.g.c)
=> CF=AD
Mà AD=BD(gt)
=> CF=BD (đccm)
- Do tg ADE=CFE (cmt)
\(\Rightarrow\widehat{FCE}=\widehat{EAD}\)
Mà chúng là 2 góc slt
=> CF//AB (đccm)
b) Nối F với B
Xét tg BCF và FDB có :
BD=FC(cmt)
BF-cạnh chung
\(\widehat{ABF}=\widehat{BFC}\)(AB//CF)
=> Tg BCF=FDB(c.g.c)
\(\Rightarrow\widehat{DFB}=\widehat{FBC}\)
Mà chúng là 2 góc slt
=> DF//BC (DE//BC) (đccm)
-Do tg BCF=FDB(cmt)
=> DF=BC
Mà : \(DE=EF=\frac{1}{2}DF\)
\(\Rightarrow DE=\frac{1}{2}BC\)
=> BC=2DE (đccm)
#H
hình tự vẽ nha
a) Xét tam giác AED và tam giác CEF có:
AE=EC (GT)
góc AED=góc CEF (đối đỉnh)
ED=EF (GT)
suy ra AD=CF
mà AD=BD (GT)
suy ra CF=BD
Xét tam giác ABC có: AD=DB (GT) và AE=EC (GT)
suy ra DE là đường trung bình của tam giác ABC (đ/n) suy ra DE=1/2BC (t/c)
mà DE=1/2DF (GT)
suy ra BC=DF
Xét tứ giác DBCF có: CF=DB, DF=BC (CMT)
suy ra: tứ giác DBCF là hình bình hành (dhnb) suy ra CF//AB
b) Có DE là đường trung bình của tam giác ABC (CMT) suy ra DE//BC (t/c)
Có DE=1/2BC (CMT) hay BC=2.DE
GT | tam giác ABC D,E: lần lượt là trung điểm AB,AC F thuộc tia đối ED, EF=ED |
KL | a)CF=BD và CF//AB b)DE//BC và BC=2.DE |
a)Xét tam giác ABC có :
D là trung điểm của AB(gt)
E là trung điểm của AC(gt)
=>DE là đường trung bình của tg ABC
=>DE=\(\dfrac{1}{2}BC\)
và DE//BC
Ta có DE=EF(gt)
=>DE+EF=2.DE=2.\(\dfrac{1}{2}.BC=BC\)
hay DF=BC
Xét tứ giác DFCB có:
DF=BC(cmt)
DF//BC(DE//BC)
=> DFCB là hình bình hành (dhnb)
=>CF=BD và CF//BD
hay CF=BD và CF//AB
Vậy CF=BD và CF//AB
b)DE//BC(đã cm ở câu trên r)
DE=\(\dfrac{1}{2}BC\left(cmt\right)\)
=>BC=2DE
Vậy DE//BC và BC=2.DE
Xét tam giác AED và tam giác CEF có:
AE = CE (E là trung điểm của AC)
AED = CEF (2 góc đối đỉnh)
ED = EF (E là trung điểm của DF)
=> Tam giác AED = Tam giác CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF
ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF
Xét tam giác BDC và tam giác FCD có:
BD = FC (chứng minh trên)
BDC = FCD (2 góc so le trong, AD // CF)
CD chung
=> Tam giác BDC = Tam giác FCD (c.g.c)
=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC
BC = FD (2 cạnh tương ứng) mà DE = 12FD12FD (E là trung điểm của FD) => DE = 12BC
a) Xét ∆ADE và ∆CFE, ta có:
AE = CE (gt)
\(\widehat{AED}\)= \(\widehat{CEF}\) (đối đỉnh)
DE = FE(gt)
Suy ra: ∆ADE = ∆CFE (c.g.c)
⇒ AD = CF (hai cạnh tương ứng)
Mà AD = DB (gt)
Vậy: DB = CF
c/Ta có:\(\widehat{BCD}\)=\(\widehat{FDC}\)(vì ΔBDC=ΔFCD)
Mà hai góc này ở vị trí so le trong
Nên DE//BC
Ta có: DE=\(\frac{1}{2}\)DF(vì E là trung điểm của DF)
Mà DF=CB(vì ΔFCD=ΔBDC)
Vậy DE=\(\frac{1}{2}\)CB