K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

cho tam giác ABC và 3 điểm A',B',C' lần lượt nằm trên 3 cạnh BC,AC,AB ( A',B',C' không trùng với các đỉnh của tam giác )

Khi đó ta có : AA',BB',CC' đồng quy \(\Leftrightarrow\frac{A'B}{A'C}.\frac{B'C}{B'A}.\frac{C'A}{C'B}=1\)

A B C A' B' C'

26 tháng 4 2020

A B C H E M D P

Gọi P là giao điểm của AD và BE

Áp dụng định lí Ceva vào \(\Delta ABE\),ta có :

\(\frac{BP}{PE}.\frac{HE}{AH}.\frac{AM}{BM}=1\Rightarrow\frac{AH}{HE}=\frac{BP}{PE}\Rightarrow PH//AB\)

\(\Rightarrow\widehat{BAD}=\widehat{DPH}\)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{DAH}=\widehat{PDH}\Rightarrow\Delta AHP\)cân tại H

\(\Rightarrow HP=AH\)

Cần chứng minh \(DP//CE\Leftrightarrow\frac{BD}{BC}=\frac{BP}{BE}\Leftrightarrow\frac{BD}{BC}=1-\frac{EP}{BE}\)

Ta có : \(\frac{EP}{BE}=\frac{HP}{AB}=\frac{AH}{AB}=\frac{HD}{BD}\)

Khi đó : \(\frac{BD}{BC}=1-\frac{HD}{BD}\Leftrightarrow\frac{BD}{BC}+\frac{HD}{BD}=1\Leftrightarrow BD^2+HD.BC=BC.BD=\left(BD+DC\right).BD\)

\(\Rightarrow HD.BC=CD.BD\Rightarrow\frac{HD}{BD}=\frac{CD}{BC}\Leftrightarrow\frac{AH}{AB}=\frac{CD}{BC}\)

Ta có : \(\widehat{CDA}=\widehat{DBA}+\widehat{BAD}=\widehat{CAH}+\widehat{DAH}=\widehat{CAD}\)

\(\Rightarrow\Delta CAD\)cân tại C \(\Rightarrow CD=CA\)

Từ đó suy ra : \(\frac{AH}{AB}=\frac{AC}{BC}\)    ( đúng vì \(\Delta AHB~\Delta CAB\left(g.g\right)\))

Vậy ta có đpcm

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC và AC^2=CH*BC

=>AB^2/AC^2=BH/CH

b: S AHC=8,64

=>1/2*AH*HC=8,64

=>AH*HC=17,28

S AHB=15,36

=>1/2*AH*HB=15,36

=>AH*HB=30,72

mà AH*HC=17,28

nên AH*AH*HB*HC=30,72*17,28

=>AH^2*AH^2=30,72*17,28

=>AH^4=530,8416

=>\(AH=\sqrt[4]{530.8416}=4.8\left(cm\right)\)

 

4 tháng 8 2023

Bạn làm câu c) giúp mình được không

10 tháng 6 2018

A B C O D E H F M K I

a) Ta có: Đường tròn (O) đường kính BC và 2 điểm D;E nằm trên (O)

=> ^BEC=^BDC=900 => BD vuông AC; CE vuông AB

Mà BD gặp CE tại H => H là trực tâm \(\Delta\)ABC

=> AH vuông BC (tại F) hay AF vuông BC (đpcm).

b) Thấy: \(\Delta\)ADH vuông đỉnh D, M là trg điểm AH

=> \(\Delta\)DMA cân đỉnh M => ^MDA=^MAD (1).

Tương tự: \(\Delta\)DOC cân đỉnh O => ^ODC=^OCD (2).

(1) + (2) => ^MAD+^ODC = ^MDA+^ODC = ^MAD+^OCD

Mà 2 góc ^MAD; ^OCD phụ nhau (Do \(\Delta\)AFC vuông đỉnh F)

=> ^MDA+^ODC=900 => ^MDO=900 => MD vuông OD

Lập luận tương tự: ME vuông OE => Tứ giác MEOD có ^MEO=^MDO=900

=> MEOD là tứ giác nội tiếp đường tròn đường kính OM

Xét tứ giác MFOD: ^MFO=^MDO=900 => Tứ giác MFOD nội tiếp đường tròn đường kính MO.

Do đó: 5 điểm M;D;O;E;F cùng thuộc 1 đường tròn đường kính OM (đpcm).

c) Dễ c/m \(\Delta\)EBF ~ \(\Delta\)CDF (c.g.c) => ^EFB=^CFD

=> 90- ^EFB = 900 - ^CFD => ^EFA=^DFA hay ^EFM=^MFD

Xét tứ giác FEMD: Nội tiếp đường tròn => ^EFM=^KDM => ^MFD=^KDM

=> \(\Delta\)MKD ~ \(\Delta\)MDF (g.g) => \(\frac{MD}{MF}=\frac{MK}{MD}\Rightarrow MD^2=MK.MF\)(đpcm).

Gọi I là giao điểm BK và MC.

Dễ thấy: \(\Delta\)FEK ~ FMD (g.g) => \(\frac{FE}{FM}=\frac{FK}{FD}\Rightarrow FE.FD=FM.FK\)

Hoàn toàn c/m được: \(\Delta\)EFB ~ \(\Delta\)CFD (c.g.c) => \(\frac{FE}{FC}=\frac{BF}{FD}\Rightarrow FE.FD=BF.FC\)

Từ đó suy ra: \(FM.FK=BF.FC\)\(\Rightarrow\frac{BF}{FM}=\frac{FK}{FC}\)

\(\Rightarrow\Delta\)BFK ~ \(\Delta\)MFC (c.g.c) => ^FBK=^FMC . Mà ^FMC+^FCM=900

=> ^FBK+^FCM = 900 hay ^FBI+^FCI=900 => \(\Delta\)BIC vuông đỉnh I

=> BK vuông với MC tại điểm I.

Xét \(\Delta\)MBC: BK vuông MC (cmt); MK vuông BC (tại F) => K là trực tâm \(\Delta\)MBC (đpcm).

d) Thấy ngay: EH là phân giác trong của \(\Delta\)FEK. Mà EA vuông EH

=> EA là phân giác ngoài tại đỉnh E của \(\Delta\)FEK

Theo ĐL đường phân giác trg tam giác: \(\frac{KH}{FH}=\frac{AK}{AF}\)

\(\Leftrightarrow1+\frac{KH}{FH}=1+\frac{AK}{AF}\Rightarrow\frac{FK}{FH}=\frac{AK+AF}{AF}\Leftrightarrow\frac{FK}{FH}=\frac{FK+2AK}{AF}\)

\(\Leftrightarrow\frac{FK}{FH}=\frac{FK}{AF}+\frac{2AK}{AF}\Leftrightarrow\frac{FK}{AF}=\frac{FK}{FH}-\frac{2AK}{AF}\)

\(\Leftrightarrow\frac{FK}{AF}+\frac{FK}{FH}=\frac{2FK}{FH}-\frac{2AK}{AF}=2+\frac{2KH}{FH}-2+\frac{2KF}{AF}=\frac{2KH}{FH}+\frac{2KF}{AF}\)

\(\Rightarrow FK\left(\frac{1}{AF}+\frac{1}{FH}\right)=\frac{2KH}{FH}+\frac{2KF}{AF}\)

Đến đây, lại thay: \(\frac{KH}{FH}=\frac{AK}{AF}\)(T/c đg phân giác)

\(\Rightarrow FK\left(\frac{1}{AF}+\frac{1}{FH}\right)=\frac{2\left(AK+KF\right)}{AF}=\frac{2AF}{AF}=2\)

\(\Leftrightarrow\frac{1}{AF}+\frac{1}{FH}=\frac{2}{FK}.\)(đpcm). 

22 tháng 4 2020

d.

Xét△FBH và △FAC có BFH=AFC=90*,FBH=FAC(cùng phụ BCD)

=>△FBH∼ △FAC(g.g) =>FH.FA=FB.FC .

Xét△FBK và △FMC có BFK=MFC=90*, FBK=FMC

=>△FBK ∼ △FMC(g.g)=>FK.FM=FB.FC .

=>FH.FA=FK.FM

Mà FH+FA=FM-MH+FM+MA=2FM

Ta có 2FH.FA=2FK.FM=>2FH.FA=FK(FH+FA)=>KL

16 tháng 7 2016

23+23=46