\(^{\widehat{A}}=60^0,AB=AC\)  đg cao BH(H thuôc AC)

a) so sánh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2020

a ) Ta có : 

+) \(AB< AC\) ( gt )  

 \(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )

+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABH+60+90=180\)

\(\Rightarrow ABH=30\)

b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt ) 

\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)

Mà \(ABH=30\) ( cmt ) 

\(\Rightarrow ABH=BAD\)

\(\Rightarrow ABH=BAI\)

Xét tam giác \(AIB\) và tam giác \(BHA\) có : 

\(AB\) chung 

\(AIB=BHA=90\)

\(BAI=ABH\)

\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g ) 

c ) Xét tam giác \(ABI\) có : 

\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABI+30+90=180\)

\(\Rightarrow ABI=60\)

\(\Rightarrow ABE=60\)                                 ( 1 ) 

 Xét tam giác \(ABE\) có : 

\(ABE+BAE+AEB=180\)  ( tổng ba góc trong một tam giác )

\(\Rightarrow60+60+AEB=180\)

\(\Rightarrow AEB=60\)                                  ( 2 ) 

Mà \(BAE=60\) ( gt )                         ( 3 )  

Từ ( 1 ) ; ( 2 ) ; ( 3 ) 

\(\Rightarrow\) tam giác \(ABE\) đều 

 
 
 
9 tháng 6 2020

Chứng minh câu d: 

A B C D H E I 1

Ta có: AE = AB < AC 

=> E thuộc canh AC 

\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE  (1)

Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED 

=> ^ABD = ^AED => ^B1 = ^DEC  ( góc ngoài ) 

mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B> ^C 

=> ^DEC > ^C = ^ECD 

Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2) 

Từ (1); (2) => DC > DB 

1 tháng 5 2018

A B C D H E x I

a) tam giác ABE có AI vừa là phân giác vừa là đường cao nên tam giác ABE cân tại A mà \(\widehat{A}=60^o\)

\(\Rightarrow\)tam giác ABE đều \(\Rightarrow\)AE = AB = BE

Nối DE

Chứng minh được : tam giác ADB = ADE ( c.g.c )

\(\Rightarrow\)DB = DE ; \(\widehat{ABD}=\widehat{AED}\)

Vẽ tia đối của BA là Bx 

Ta có : \(\widehat{xBD}+\widehat{DBA}=180^o\)

\(\widehat{AED}+\widehat{DEC}=180^o\)

Mà \(\widehat{xBD}=\widehat{A}+\widehat{C}\)\(\Rightarrow\)\(\widehat{xBD}>\widehat{C}\)

Từ đó suy ra : \(\widehat{DEC}>\widehat{C}\)\(\Rightarrow\)DC > DE

Mà DE = DB \(\Rightarrow\)DC > DB

1 tháng 5 2019

a, tam giác ABC có : AB < AC (gt)

=> góc ACB < góc ABC (đl)

 xét tam giác  ABH vuôn tại H

=> góc ABH + góc BAC = 90  (đl)

mà góc BAC = 60 (gt)

=> góc ABH = 30 

3 tháng 4 2017

a) Trong tam giác ABC có AB<AC

=>góc ACB< góc ABC

Có tam giác ABH vuông tại H

=>HAB+ABH=90 độ )

=>60 độ+ABH=90 độ

ABH=30 độ

b) AD là tia phân giác của góc A

=>EAI= IAB=60độ:2= 30 độ

Xét tam giác vuông BHA và tam giác vuông AIB có

Cạnh huyền AB chung

ABH=IAB=30 độ

=> tam giác AIB=tam giác BHA ( cạnh huyền- góc nhọn)

c) Xét tam giác vuông AIE và tam giác vuông AIB có

Cạnh AI chung

EAI=IAB=30 độ

=> tam giác AIE= tam giác AIB ( cạnh huyền- góc nhọn)

=>AE=AB ( 2 cạnh tương ứng)

=> Tam giác ABE là tam giác cân và có EAB=60 độ

=> Tam giác ABE là tam giác đều

d) Gọi Bx là tia đối của tia BA

Xét tam giác ADB và tam giác ADC có

AB=AE

EAD=DAB=30 độ

Cạnh AD chung

=> tam giác ADB= tam giác ADC (c.g.c)

=> DB=DE (1) và góc ABD=góc AED

do đó CBx=CED( cùng kề bù với 2 góc bằng nhau)

CBx>góc C ( CBx là góc ngoài của tam giác ABC)

=> CED>C, do đó DC>DE (2)

Từ (1) và (2) =>DC>DB

5 tháng 5 2017

A B C H D E I

a) Ta có: AB < AC (gt)

Suy ra: \(\widehat{ACB}< \widehat{ABC}\) (quan hệ giữa góc và cạnh đối diện trong tam giác)

\(\Delta ABH\) vuông tại H

\(\Rightarrow\) \(\widehat{BAH}+\widehat{ABH}=90^o\)

\(\widehat{ABH}=90^o-\widehat{BAH}\)

\(\widehat{ABH}=90^o-60^o\)

Vậy: \(\widehat{ABH}=30^o\)

b) Ta có: \(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^o}{2}=30^o\)

Xét hai tam giác vuông AIB và BHA có:

AB: cạnh huyền chung

\(\widehat{BAI}=\widehat{ABH}=30^o\)

Vậy: \(\Delta AIB=\Delta AHB\left(ch-gn\right)\)

c) Vì \(\Delta AIB=\Delta AHB\left(cmt\right)\)

\(\Rightarrow\) \(\widehat{BAH}=\widehat{ABI}\) (hai góc tương ứng)

\(\widehat{BAH}=60^o\)

\(\Rightarrow\) \(\widehat{ABI}=60^o\)

Do đó: \(\Delta ABE\) là tam giác đều

d) Ta có: AB < AC (gt)

Suy ra: DC > DB (quan hệ giữa đường xiên và hình chiếu của chúng)

Mik cx ko chắc lắm nhaleuleu

4 tháng 5 2017

các bn giúp mik với. Mik sắp phải nộp bài rồi. PLZ. Thanks mấy bn trước nhayeu

22 tháng 4 2017

tk ủng hộ với

1 tháng 5 2017

9/4/2004 BMT

1 tháng 5 2017

9/4/2004 BMT là sao vậy?