Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B D x K C H A y 1 2 3
Có Bx _|_ BC tại B (gt)
=> ^CBx = 90o
=> B1 + B2 = 90o (1)
Cmtt được B2 + B3 = 90o (2)
Từ (1)(2) => B1 = B3
Xét ∆BAD và ∆BEC có :
BD = BC (gt)
B1 = B3 (cmt)
BA = BE
=> ∆BAD = ∆BEC (c-g-c)
=> DA = CE
b) Gọi H là giao điểm của DA và CE
và K là ______________ DA và BC
Ta có ^HKC = ^BKA (đối đỉnh) (3)
Có ∆BAD = ∆BEC (cmt)
=> ^BDA = ^BCE
Hay BDK = HCK
Từ (3),(4) => HKC + HCK = BKD + ADK (5)
....đoạn tiếp để sau làm cho :v
x y D B A C E
A ) Ta có : \(\Delta DAB=\Delta CEB\)( c . g . c )
\(\Rightarrow BE=BA\)
\(\Rightarrow\widehat{DBA}=\widehat{CBE}\)( PHỤ \(\widehat{ABC}\))
\(\Rightarrow DA=EC\)( đpcm)
b) Kéo dài AB cắt BC tại \(I\)cắt EC tại K
+ \(\widehat{ICK}=\widehat{IDB}\)( do (* ) )
+ \(\widehat{DBI}=\widehat{CIK}\)( VÌ 2 GÓC ĐỐI ĐỈNH )
\(\Rightarrow\widehat{ICK}+\widehat{CIK}=\widehat{IDB}+\widehat{DIB}\)
Mà \(\widehat{IDB}+\widehat{DIB}=90\)
Do tam giác DBI vuông tại B nên ICK + CIK = \(90^o\)
\(\Rightarrow\widehat{CIK}=90^o\)
\(\Rightarrow DA\perp EC\)
Chúc bạn học tốt !!!
x y A B C E H K D
a ) Xét \(\Delta ABD\) và \(\Delta EBC\) có :
\(AB=BE\)
\(\widehat{ABD}=\widehat{EBC}\) ( cùng bằng \(90^o-\widehat{ABC}\) )
\(BD=BC\)
Suy ra \(\Delta ABD=\Delta EBC\left(c.g.c\right)\)
\(\Rightarrow DA=EC\) ( hai cạnh tương ứng )
b , Gọi giao điểm của DA với BC và EC theo thứ tự là H và K
Ta có : \(\Delta ABD=\Delta EBC\left(cmt\right)\)
\(\Rightarrow\widehat{ADB}=\widehat{ECB}\) . Do đó \(\widehat{BDH}=\widehat{KCH}\)
Xét \(\Delta DBH\) và \(\Delta CKH\)có :
\(\widehat{BDH}=\widehat{KCH},\widehat{DHB}=\widehat{CHK}\) nên \(\widehat{DBH}=\widehat{CKH}\)
Do \(\widehat{DBH}=90^o\) nên \(\widehat{CKH}=90^o\)
Vậy \(DA\perp EC\)
A B C M K D E x y
trên tia đối của MA lấy K : AM = MK
a. xét tam giác AMC và tam giác KMB có : MA = MK (cách vẽ)
BM = MC do M là trung điểm của BC (gt)
^AMC = ^KMB (đối đỉnh)
=> BK = AC (1)
^CAM = ^MKB mà 2 góc này slt
=> BK // AC
=> ^BAC + ^ABK = 180 (tcp) (2)
có : ^DAB + ^ABC + ^EAC + ^DAE = 360
^DAB = ^EAC = 90
=> ^DAE + ^BAC = 180 và (2)
=> ^DAE = ^ABK
xét tam giác ABK và tam giác DAE có : AD = AB (gt)
AE = AC (Gt) và (1) => AE = BK
=> tam giác ABK = tam giác DAE (C-g-c)
=> DE = AK (Đn)
AM = AK/2 do AM = MK (cách vẽ)
=> AM = DE/2
b, gọi AM cắt DE tại H
có : ^DAH + ^DAB + ^BAK = 180
^DAB = 90
=> ^DAH + ^BAK = 90
^BAK = ^HDA do tam giác DAE = tam giác ABK (câu a)
=> ^HDA + ^DAH = 90 xét tam giác DHA
=> ^DHA = 90
=> AM _|_ DE
x D B A C E y
a) Có: \(\Delta DAB=\Delta CEB\left(c.g.c\right)\)
=> BE = BA
\(\widehat{DBA}=\widehat{CBE}\left(ph\text{ụ}\widehat{ABC}\right)\)
=> DA = EC
b) Kéo dài AD cắt BC tại I; cắt EC tại K
+﴿ Góc ICK = IDB ﴾ do ﴾*﴿﴿
+﴿ góc DIB = CIK ﴾vì 2 góc đối đỉnh)
=> góc ICK + CIK = IDB + DIB
mà góc IDB + DIB = 90
Do tam giác BDI vuông tại B nên ICK + CIK = 90 độ
=> góc CKI = 90 độ
=> DA vuông góc EC
Câu hỏi của Trần Hoàng Yến - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo nhé!
Câu hỏi của Huyền Anh Kute| Học trực tuyến