Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E 1 2 1 2 3 4
A) XÉT \(\Delta ABC\)VUÔNG TẠI A
\(BC^2=AB^2+AC^2\left(PYTAGO\right)\)
THAY \(BC^2=3^2+4^2\)
\(BC^2=9+16\)
\(BC^2=25\)
\(\Rightarrow BC=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta ABC\) CÓ
\(BC>AC>AB\left(5>4>3\right)\)
\(\Rightarrow\widehat{A}>\widehat{B}>\widehat{C}\)QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN
B) XÉT \(\Delta BAH\)VÀ\(\Delta BDH\)CÓ
BH LÀ CẠNH CHUNG
\(\widehat{H_2}=\widehat{H_1}=90^o\)
\(AH=DH\left(GT\right)\)
=>\(\Delta BAH\)=\(\Delta BDH\)(C-G-C)
=> AB = BD( ĐPCM)
C) XÉT \(\Delta BAH\)VÀ\(\Delta EDH\)CÓ
\(BH=EH\left(GT\right)\)
\(\widehat{H_2}=\widehat{H_4}\left(Đ^2\right)\)
\(AH=DH\left(GT\right)\)
=>\(\Delta BAH\)=\(\Delta EDH\)(C-G-C)
=>\(\widehat{A_1}=\widehat{D_2}\)HAI GÓC TƯƠNG ỨNG
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> DE//AB
a) Xét ΔABD và ΔACE có:
∠ADB = ∠AEC = 900 (gt)
BA = AC (gt)
∠BAC (chung)
⇒ ΔABD =ΔACE (cạnh huyền – góc nhọn)
b) Có ΔABD =ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)
mặt khác: ∠ABC = ∠ACB (D ABC cân tại A )
⇒ ABC – ABD =ACB – ACE ⇒ HBC = HCB
⇒ ΔBHC là tam giác cân tại H
c) Có ΔHDC vuông tại D nên HD < HC
mà HB = HC (ΔBHC cân tại H)
⇒ HD < HB
d) Gọi I là giao điểm của BN và CM
* Xét ΔBNH và ΔCMH có:
BH = CH (ΔBHC cân tại H)
∠BHN = ∠CHM (đối đỉnh)
NH = HM (gt)
ΔBNH = ΔCMH (c.g.c) ⇒ ∠HBN = ∠HCM
* Lại có: ∠HBC = ∠HCB (Chứng minh câu b)
⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM ⇒ ∠IBC = ∠ICB
⇒ IBC cân tại I ⇒ IB = IC (1)
Mặt khác ta có: AB = AC (D ABC cân tại A) (2)
HB = HC (D HBC cân tại H) (3)
* Từ (1); (2) và (3)
Þ 3 điểm I; A; H cùng nằm trên đường trung trực của BC
⇒ I; A; H thẳng hàng
⇒ các đường thẳng BN; AH; CM đồng quy
Bài giải :
a) Xét ΔABD và ΔACE có:
∠ADB = ∠AEC = 900 (gt)
BA = AC (gt)
∠BAC (chung)
⇒ ΔABD =ΔACE (cạnh huyền – góc nhọn)
b) Có ΔABD =ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)
mặt khác: ∠ABC = ∠ACB (D ABC cân tại A )
⇒ ABC – ABD =ACB – ACE ⇒ HBC = HCB
⇒ ΔBHC là tam giác cân tại H
c) Có ΔHDC vuông tại D nên HD < HC
mà HB = HC (ΔBHC cân tại H)
⇒ HD < HB
d) Gọi I là giao điểm của BN và CM
* Xét ΔBNH và ΔCMH có:
BH = CH (ΔBHC cân tại H)
∠BHN = ∠CHM (đối đỉnh)
NH = HM (gt)
ΔBNH = ΔCMH (c.g.c) ⇒ ∠HBN = ∠HCM
* Lại có: ∠HBC = ∠HCB (Chứng minh câu b)
⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM ⇒ ∠IBC = ∠ICB
⇒ IBC cân tại I ⇒ IB = IC (1)
Mặt khác ta có: AB = AC (D ABC cân tại A) (2)
HB = HC (D HBC cân tại H) (3)
* Từ (1); (2) và (3)
Þ 3 điểm I; A; H cùng nằm trên đường trung trực của BC
⇒ I; A; H thẳng hàng
⇒ các đường thẳng BN; AH; CM đồng quy
a, \(\Delta AHB=\Delta AHC\left(ch-cgv\right)\Rightarrow HB=HC\) (2 cạnh tương ứng)
Theo đề bài tam giác ABC vuông cân tại A nên \(\widehat{ABH}=45^0\) và tính được \(\widehat{BAH}=45^0\)
Tam giác AHB có: \(\widehat{AHB}=90^0\) và \(\widehat{ABH}=\widehat{BAH}=45^0\)
\(\Rightarrow\Delta AHB\) vuông cân tại H \(\Rightarrow HA=HB\)
Vậy HA = HB = HC
b, Sửa lại đề bài: \(BD\perp d\)
Tam giác ABD vuông tại D(gt) \(\Rightarrow\widehat{ABD}+\widehat{BAD}=90^0\) (1)
Ta có: \(\widehat{BAD}+\widehat{BAC}+\widehat{CAE}=180^0\Rightarrow\widehat{BAD}+\widehat{CAE}=90^0\) (2)\(\left(\widehat{BAC}=90^0\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{ABD}=\widehat{CAE}\)
\(\Delta ABD=\Delta CAE\left(c.g.c\right)\Rightarrow AD=CE\)( 2 cạnh tương ứng)
Mong bạn hiểu lời giải của mình. Chúc bạn học tốt.