Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như mình đã nhắc nhở bạn một lần về việc không đăng quá nhiều lần 1 bài toán nhưng bạn vẫn làm vậy. Lần sau mình xin phép sẽ xóa hết nhé!
Lời giải:
$3\widehat{A}+2\widehat{B}=180^0$
$\Rightarrow \widehat{A}+\widehat{B}< 90^0\Rightarrow \widehat{C}>90^0$
Do đó trong tam giác $ABC$ thì $AB$ là cạnh lớn nhất. Trên $AB$ lấy $M$ sao cho $AM=AC$
Ta có:
$\widehat{AMC}=\frac{180^0-\widehat{A}}{2}$
$\Rightarrow \widehat{BMC}=180^0-\frac{180^0-\widehat{A}}{2}=180^0-\frac{3\widehat{A}+2\widehat{B}-\widehat{A}}{2}$
$=180^0-(\widehat{A}+\widehat{B})=\widehat{ACB}$
Do đó:
$\triangle ACB\sim \triangle CMB$ (g.g)
$\Rightarrow \frac{AB}{CB}=\frac{CB}{MB}$
$\Rightarrow AB.MB=BC^2$
$\Leftrightarrow AB(AB-AM)=BC^2$
$\Leftrightarrow AB^2-AB.AC=BC^2$.
Nếu $(AB,BC,AC)=(k, k+2, k+4)$ thì:
$k^2-k(k+4)=(k+2)^2$
$\Leftrightarrow k^2+8k+4=0$
$\Leftrightarrow k=-4\pm 2\sqrt{3}$ (loại vì $k$ tự nhiên)
Nếu $(AB, BC, AC)=(k+2, k, k+4)$ thì:
$(k+2)^2-(k+2)(k+4)=k^2$
$\Leftrightarrow k^2+2k+4=0$
$\Leftrightarrow (k+1)^2=-3< 0$ (vô lý)
Vậy không tìm được chu vi.
b) Ta có: AD+DC=AC(D nằm giữa A và C)
nên DC=AC-AD=3-1=2(cm)
Ta có: DE=AD(gt)
mà AD=1cm(cmt)
nên DE=1cm
Ta có: \(\dfrac{BD}{CD}=\dfrac{\sqrt{2}}{2}\)
\(\dfrac{DE}{DB}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Do đó: \(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)\(\left(=\dfrac{\sqrt{2}}{2}\right)\)
Xét ΔBDE và ΔCDB có
\(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)(cmt)
\(\widehat{BDE}\) chung
Do đó: ΔBDE\(\sim\)ΔCDB(c-g-c)
a) Ta có: AD+DE+EC=AC
mà AD=DE=EC(gt)
nên \(AD=\dfrac{AC}{3}=\dfrac{3}{3}=1\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=1+1=2\)
hay \(BD=\sqrt{2}cm\)
Vậy: \(BD=\sqrt{2}cm\)
Nếu đã không viết đúng được chính tả thì đừng viết, trẻ đú manh động hà ~~~
Kamsanita là cái mọe gì, kamsamita hoặc kamsahamnida nhé, kém sang ***** :)))
nó đú del bt đú sai như kia mà đăng lên đc đù má