Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\widehat{ABC}=180^0-60^0-40^0=80^0\)
\(\widehat{ABE}=80^0-10^0=70^0\)
\(\widehat{AEB}=180^0-70^0-60^0=50^0\)
A B C M N
ta có góc C = 180-80-60=400
Ta có :
\(\widehat{ACN}+\widehat{ACB}=180^0\\ \Rightarrow\widehat{ACN}=180^0-40^0=140^0\)
Ta lại có : CA=CN
=> tam giác ACN cân
=> \(\widehat{CAN}=\widehat{N}\)
\(\Rightarrow\widehat{CAN}+\widehat{N}=180^0-140^0=40^0\\ \Rightarrow\widehat{CAN}=\widehat{N}=20^0\)
\(\widehat{ABM}+\widehat{B}=180^0\\ \Rightarrow\widehat{ABM}=180^0-60^0=120^0\)
Ta lại có :
BA=BM => tam giác ABM cân
=> \(\widehat{MAB}=\widehat{M}\\ \Rightarrow\widehat{MAB}+\widehat{M}=180^0-120^0=60^0\\ \Rightarrow\widehat{MAB}=\widehat{M}=30^0\)
\(\widehat{A}\) của tam giác AMN = \(20^0+30^0+80^0=130^0\)
Chúc bạn học tốt !!!
Gọi số đo ba góc A; B; C lần lượt là:
A ; B; C
Vì A, B , C tỉ lệ thuận với 7, 7, 16 và A+B+C=1800(tổng ba góc của một tam giác)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{A}{7}\)+\(\dfrac{B}{7}\)+\(\dfrac{C}{16}\)=\(\dfrac{A+B+C}{7+7+16}\)=\(\dfrac{180}{30}\)=6
⇒\(\dfrac{A}{7}\)=6 ⇒A= 7.6=42
⇒\(\dfrac{B}{7}=6\Rightarrow B=7.6=42\)
⇒\(\dfrac{C}{16}=6\Rightarrow\)C=16.6=96
Vậy số đó các góc A;B;C lần lượt là:
42 độ ; 42độ; 96 độ
(Mình không biết ghi cái kí hiệu độ nên bạn xem đỡ nha)
Hình tự vẽ:
a) AC = ?
Vì ΔABC cân tại A nên: AC = AB = 4 (cm)
b) So sánh: ∠ABC và ∠ACB, AC và AD
Vì ΔABC cân tại A nên: ∠ABC = ∠ACB
Vì ∠ABD = ∠ACB (gt) và ∠ABC = ∠ACB (cmt)
Mà AD € AC ⇒ D ≡ C ⇒ AC = AD
c) AE đi qua trung điểm của BC
Vì D ≡ C nên: AE ⊥ AC.
Xét hai tam giác vuông ABE và ACE có:
AB = AC (câu a)
∠B = ∠C (góc ở đáy)
Do đó: ΔABE = ΔACE (cạnh huyền - góc nhọn)
⇒ BE = CE (hai cạnh tương ứng)
⇒ E là trung điểm của BC
⇒ AE đi qua trung điểm của BC
d) AG = ?
Vì E là trung điểm của AC nên: BE = CE = BC : 2 = 5 : 2 = 2,5 (cm)
Áp dụng định lí Pytago vào ΔABE vuông tại E, ta có:
AB2 = AE2 + BE2 ⇒ AE2 = AB2 - BE2 = 42 - 2,52 = 16 - 6,25 = 9,75 (cm) ⇒ AE = \(\sqrt{9,75}\)
Vì BM cắt AE tại G nên G là trọng tâm của ΔABC, suy ra:
AG = \(\frac{2}{3}\)AE = \(\frac{2}{3}.\sqrt{9,75}=\frac{2.\sqrt{9,75}}{3}=\frac{\sqrt{39}}{3}\)
Bài 2:
\(\widehat{xAy}=\widehat{x'Ay'}=47^0\)(hai góc đối đỉnh)
\(\widehat{xAy'}=180^0-\widehat{xAy}=133^0\)(hai góc kề bù)
=>\(\widehat{x'Ay}=133^0\)(hai góc đối đỉnh)
Ta có hình vẽ:
A B C E 80 40
1/ Trong tam giác ABC có:
góc A + góc B + góc C = 1800
hay 800 + góc B + 400 = 1800
=> góc B = 600
Ta có: góc ABE + góc EBC = góc B
hay góc ABE + 100 = 600
=> góc ABE = 500.
Trong tam giác ABE có:
góc ABE + góc A + góc AEB = 1800
hay 500 + 800 + góc AEB = 1800
=> góc AEB = 500.
2/ Vì góc AEB = 500 và góc ABE = 500 (cmt)
=> góc AEB = góc ABE.