K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DG
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TY
1
NV
Nguyễn Việt Lâm
Giáo viên
28 tháng 1 2021
Đề bài sai, phản ví dụ:
Tam giác ABC vuông tại A với \(AB=1;AC=\sqrt{3};BC=2\)
Khi đó \(AM=\dfrac{1}{2}BC=1=AB\) thỏa mãn yêu cầu bài toán
Góc \(B=60^0;A=90^0\)
Khi đó: \(sinA=1\) trong khi \(2sin\left(B-A\right)=2sin\left(-30\right)=-1\)
CM
5 tháng 5 2019
Nhận xét: Tam giác ABC có a2 + b2 = c2 nên vuông tại C.
+ Diện tích tam giác: S = 1/2.a.b = 1/2.12.16 = 96 (đvdt)
+ Chiều cao ha: ha = AC = b = 16.
+ Tâm đường tròn ngoại tiếp tam giác là trung điểm của AB.
Bán kính đường tròn ngoại tiếp R = AB /2 = c/2 = 10.
+ Bán kính đường tròn nội tiếp tam giác: S = p.r ⇒ r = S/p.
Mà S = 96, p = (a + b + c) / 2 = 24 ⇒ r = 4.
+ Đường trung tuyến ma:
ma2 = (2.(b2 + c2) – a2) / 4 = 292 ⇒ ma = √292.
Để chứng minh rằng cotC = 3cotB, ta sẽ sử dụng các tính chất của tam giác và công thức liên quan đến cotangent.
Vì ma = c là trung tuyến của tam giác ABC, ta có AM = MC. Do đó, ta có tam giác AMC là tam giác cân tại A.
Áp dụng công thức của cotangent trong tam giác cân, ta có cotC = cotA = cotB.
Vậy, ta có cotC = cotB.
Tuy nhiên, để chứng minh rằng cotC = 3cotB, cần thêm thông tin về tam giác ABC hoặc các điều kiện khác.