Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia AM lấy điểm D sao cho DM = AM . Nối D với C . CM , tam giác MBA bằng tam giác MCD ( c . g . c )
Suy ra góc BAM bằng góc CDM , suy ra CD // BA suy ra BAC+ DCA = 180 độ và góc BAC bằng góc DCA theo CM 2 tam giác trên suy ra
BAC = DCA = 90 độ
Kết luận : Tam giác trên là tam giac vuông tại A
kết luận tam giác trên là tam giác vuông để làm j người ta cho sẵn rồi mà
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
Xét ΔABC có
AM là đường trung tuyến
AM là đường phân giác
Do đó: ΔABC cân tại A
\(\text{Xét }\Delta ABC\text{ có:}\)
\(\left\{{}\begin{matrix}AM\text{ là đường phân giác(gt)}\\AM\text{ là đường trung tuyến(gt)}\end{matrix}\right.\)
\(\Rightarrow\Delta ABC\text{ cân tại A}\)
xét tam giác ABM và tam giác ACM ta có
AM=AM ( cạnh chung)
AB=AC( tam giác ABC cân tại A)
goc MAB = góc MAC ( AM là tia p.g góc BAC)
->tam giac ABM= tam giac ACM (c-g-c)
giúp mik nhanh câu c dc khum ạ
2 câu kia mik xong r
cảm ơn các bạn
Sửa đề: ΔABC vuông
Xét ΔABC có
AM là trung tuyến
AM=1/2BC
=>ΔABC vuông tại A