Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình nha
a) Vì DM là tia phân giác của góc AMB nên góc M\(_2\) =góc \(\frac{AMB}{2}\) (1)
Vì ME là tia phân giác của góc AMC nên góc M\(_3\)= góc \(\frac{AMC}{2}\) (2)
Từ (1) và (2) => góc DME = góc M\(_2\)+góc M\(_3\) = góc \(\frac{AMB}{2}\)+ góc \(\frac{AMC}{2}\)
= góc \(\frac{AMB+AMC}{2}\)= góc \(\frac{BMC}{2}\) =\(\frac{180^0}{2}\)
= 90\(^0\)
Vậy tam giác DME vuông tại M (đpcm)
Bạn có cần mình vẽ hình không, thôi mình cứ vẽ cho rõ ràng nhé, mà hình không chắc đúng đâu nha :33
A B C M K D E
a) Xét tam giác \(ACM\), KM là tia phân giác của \(\widehat{AMC}\)
\(\Rightarrow\frac{AM}{MC}=\frac{AD}{DC}\) ( tính chất đường phân giác trong tam giác )
Mà : \(MC=MB\) ( Do M là trung điểm của BC )
\(\Rightarrow\frac{AM}{MB}=\frac{AD}{DC}\) ( đpcm )
b) Chứng minh tương tự phần a) với tam giác \(AMB\) ta có : \(\frac{AM}{MB}=\frac{AK}{BK}\) ( tính chất đường phân giác trong tam giác )
Khi đó : \(\frac{AK}{BK}=\frac{AD}{DC}\left(=\frac{AM}{MB}\right)\)
\(\Rightarrow\frac{AK}{AB}=\frac{AD}{AC}\)
Xét \(\Delta ABC,K\in AB,D\in AC\) và \(\frac{AK}{AB}=\frac{AD}{AC}\left(cmt\right)\)
\(\Rightarrow KD//BC\) ( định lý Talet đảo ) (đpcm)
c) Áp dụng định lý Talet cho các tam giác ABM , ACM ta có :
+) \(EK//BM\Rightarrow\frac{KE}{BM}=\frac{AE}{AM}\)
+) \(ED//MC\Rightarrow\frac{ED}{MC}=\frac{AE}{AM}\)
\(\Rightarrow\frac{KE}{BM}=\frac{ED}{MC}\Rightarrow EK=ED\) ( do \(BM=CM\) )
Nên : E là trung điểm của KD ( đpcm )
d) Ta có : \(KD=10\Rightarrow KE=5\)
Theo câu c) ta có : \(\frac{KA}{AB}=\frac{AE}{AM}=\frac{KE}{BM}\Rightarrow\frac{5}{8}=\frac{KE}{BM}=\frac{5}{BM}\)
\(\Rightarrow BM=8\Rightarrow BC=16\left(cm\right)\)
Vậy : \(BC=16cm\)
A B C M N P I
Trên nửa mặt phẳng bờ AM không chứa điểm B, dựng \(\Delta\)AMP sao cho \(\Delta\)AMP ~ \(\Delta\)ABC
Định nghĩa tương tự với điểm N. Gọi phân giác của ^ABM cắt AM tại I.
Từ \(\Delta\)AMP ~ \(\Delta\)ABC ta có tỉ số \(\frac{AM}{AB}=\frac{AP}{AC}\)hay \(\frac{AP}{AM}=\frac{AC}{AB}\)
Đồng thời ^MAP = ^BAC => ^PAC = ^MAB. Từ đó \(\Delta\)APC ~ \(\Delta\)AMB (c.g.c)
Suy ra ^APC = ^AMB => ^APM + ^MPC = ^AMB => ^MPC = ^AMB - ^APM = ^AMB - ^ACB (1)
Lập luận tương tự ta có ^MNB = ^AMC - ^ANM = ^AMC - ^ABC (2)
Từ (1) và (2), kết hợp với giả thiết ^AMB - ^C = ^AMC - ^B suy ra ^MPC = ^MNB
Ta lại có ^PMC = ^AMC - ^AMP = ^AMC - ^ABC = ^AMB - ^ACB = ^AMB - ^AMN = ^NMB
Do vậy \(\Delta\)BNM ~ \(\Delta\)CPM (g.g) => \(\frac{BM}{CM}=\frac{MN}{MP}\)
Mặt khác \(\Delta\)ANM ~ \(\Delta\)AMP (~\(\Delta\)ABC) => \(\frac{MN}{PM}=\frac{AN}{AM}=\frac{AB}{AC}\)
Từ đây \(\frac{BM}{CM}=\frac{AB}{AC}\) hay \(\frac{BA}{BM}=\frac{CA}{CM}\). Theo ĐL đường phân giác trong tam giác có:
\(\frac{BA}{BM}=\frac{IA}{IM}\). Do đó \(\frac{CA}{CM}=\frac{IA}{IM}\)=> CI là phân giác của ^ACM
Điều này tức là phân giác của ^ABM và ^ACM cắt nhau tại điểm I nằm trên AM => ĐPCM.
ko biết