Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia MA lấy điểm D sao cho \(MD=MA\). Khi đó xét 2 tam giác MAB và MDC, ta có \(MA=MD\) (cách vẽ), \(\widehat{AMB}=\widehat{DMC}\) và \(MB=MC\) (do AM là đường trung tuyến của tam giác ABC)
\(\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\) \(\Rightarrow\widehat{MAB}=\widehat{MDC}\) \(\Rightarrow AB//CD\). Mà \(AB\perp AC\) nên \(AC\perp CD\) hay \(\widehat{ACD}=90^o\)
Đồng thời ta cũng có \(AB=CD\)
Xét 2 tam giác ABC và CDA, có AC là cạnh chung, \(\widehat{BAC}=\widehat{DCA}\left(=90^o\right)\) và \(AB=CD\left(cmt\right)\), suy ra \(\Delta ABC=\Delta CDA\left(c.g.c\right)\) \(\Rightarrow BC=AD\)
\(\Rightarrow\dfrac{1}{2}BC=\dfrac{1}{2}AD\) \(\Rightarrow MB=MA\)
Từ đó ta có \(MA=MB=MC=MD\), suy ra đpcm.
2:
a: Xét ΔABC có BM,CN là trung tuyến và G là giao của BM,CN
nên G là trọng tâm
=>BG=2GM và CG=2GN
=>BG=GE và CG=GF
=>G là trung điểm chung của BE và CF
=>BCEF là hình bình hành
=>BC=EF
b: Xét ΔFAE và ΔBGC có
FA=BG
AE=GC
FE=BC
=>ΔFAE=ΔBGC
Cho tam giác ABC cân ở A, đường trung tuyến AM.
a) Chứng minh AM BC
b) Tính AM biết rằng AB cm BC cm 10 , 12