K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2023

Đặt \(C\left(x;y\right)\)

Ta có: \(\left\{{}\begin{matrix}\overrightarrow{OM}=\left(2;4\right)\\\overrightarrow{CM}=\left(2-x;4-y\right)\end{matrix}\right.\)

Do O là trọng tâm tam giác và M là trung điểm AB \(\Rightarrow CM\) là trung tuyến

Theo tính chất trọng tâm:

\(\overrightarrow{CM}=3\overrightarrow{OM}\Rightarrow\left\{{}\begin{matrix}2-x=3.2\\4-y=3.4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=-8\end{matrix}\right.\)

\(\Rightarrow C\left(-4;-8\right)\)

27 tháng 12 2023

a) Ta có: I là trung điểm AB

\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{-1+3}{2}=1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{-2+2}{2}=0\end{matrix}\right.\)

\(\Rightarrow I\left(1;0\right)\)

b) Ta có: G là trọng tâm tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{-1+3+4}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-2+2+1}{3}=\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow G\left(2;\dfrac{1}{3}\right)\)

13 tháng 1 2022

tui mới lớp 6

13 tháng 1 2022

mày dám

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Do M, N, P là trung điểm của các cạnh BC, CA, AB nên:

\(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = {x_M}\\\frac{{{x_B} + {x_A}}}{2} = {x_P}\\\frac{{{x_A} + {x_C}}}{2} = {x_N}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 4\\{x_B} + {x_A} = 2\\{x_A} + {x_C} = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 3\\{x_B} =  - 1\\{x_C} = 5\end{array} \right.\)  và  \(\left\{ \begin{array}{l}\frac{{{y_B} + {y_C}}}{2} = {y_M}\\\frac{{{y_B} + {y_A}}}{2} = {y_P}\\\frac{{{y_A} + {y_C}}}{2} = {y_N}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_B} + {y_C} = 0\\{y_B} + {y_A} = 4\\{y_A} + {y_C} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_A} = 5\\{y_B} =  - 1\\{y_C} = 1\end{array} \right.\)

Vậy \(A\left( {3;5} \right),B\left( { - 1; - 1} \right),C\left( {5;1} \right)\)

b) Trọng tâm tam giác ABC có tọa độ là: \(\left\{ \begin{array}{l}\frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{3 + \left( { - 1} \right) + 5}}{3} = \frac{7}{3}\\\frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{5 + \left( { - 1} \right) + 1}}{3} = \frac{5}{3}\end{array} \right.\)

Trọng tâm tam giác MNP có tọa độ là: \(\left\{ \begin{array}{l}\frac{{{x_M} + {x_N} + {x_P}}}{3} = \frac{{2 + 4 + 1}}{3} = \frac{7}{3}\\\frac{{{y_M} + {y_N} + {y_P}}}{3} = \frac{{0 + 2 + 3}}{3} = \frac{5}{3}\end{array} \right.\)

Vậy trọng tâm của 2 tam giác ABC và MNP là trùng nhau vì có cùng tọa độ.

NV
2 tháng 1

Do C thuộc trục Oy nên tọa độ có dạng \(C\left(0;c\right)\)

Áp dụng công thức trọng tâm:

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{4}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{c-2}{3}\end{matrix}\right.\)

Do G thuộc Ox \(\Rightarrow y_G=0\Rightarrow\dfrac{c-2}{3}=0\Rightarrow c=2\)

\(\Rightarrow C\left(0;2\right)\)

9 tháng 6 2021

G là trọng tâm \(\Leftrightarrow\left\{{}\begin{matrix}0+4+x_C=3.\dfrac{7}{3}\\2+0+y_c=3.1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_c=3\\y_c=1\end{matrix}\right.\Rightarrow C\left(3;1\right)\)

Có: `\vec(BC) (-1;1)`

`=>` PT: `-1(x-4)+1(y-0)=0 <=> -x+y+4=0`

19 tháng 12 2022

a: vect OA=(3;-1)

vecto OB=(4;2)

Vì 3/4<>-1/2

nên O,A,B ko thẳng hàng

b: OABM là hình bình hành

nên vecto OA=vecto MB

=>4-x=3 và 2-y=-1

=>x=1 và y=3

c: Tọa độ I là:

x=(3+4)/2=3,5 và y=(-1+2)/2=0,5

8 tháng 5 2021

\(M=\left(m;8m+4\right)\) là trung điểm AC.

\(\Rightarrow A=\left(2m+5;16m+14\right)\)

Mà \(A\in AH\Rightarrow2m+5+2\left(16m+14\right)+1=0\)

\(\Rightarrow m=-1\)

\(\Rightarrow A=\left(3;-2\right)\)

Đường thẳng BC đi qua \(C=\left(-5;-6\right)\) và vuông góc AH có phương trình:

\(2x-y+4=0\)

B có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}8x-y+4=0\\2x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\end{matrix}\right.\Rightarrow B=\left(0;4\right)\)

 

a: vecto AB=(2-m;-2)

vecto AC=(-4-m;2)

Để A,B,C ko thẳng hàng thì \(\dfrac{2-m}{-4-m}< >\dfrac{-2}{2}=-1\)

=>2-m<>m+4

=>-2m<>2

=>m<>-1

b: Tọa độ trọng tâm là:

\(\left\{{}\begin{matrix}x=\dfrac{m+2-4}{3}=\dfrac{m-2}{3}\\y=\dfrac{3+1+5}{3}=3\end{matrix}\right.\)

Để M nằm trên d thì \(\left\{{}\begin{matrix}\dfrac{m-2}{3}=t+1\\5-2t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=1\\m-2=3\cdot2=6\end{matrix}\right.\Leftrightarrow m=8\)