K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

A C B D E

a) Xét tam giác vuông ABC, ta có: \(\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o\)

b) Ta thấy góc \(\widehat{BAD}\) và \(\widehat{BAC}\) là hai góc kề bù, mà \(\widehat{BAC}=90^o\Rightarrow\widehat{BAD}=90^o\)

Xét hai tam giác vuông ABD và ABC có:

BA chung

DA = CA (gt)

\(\Rightarrow\Delta ABD=\Delta ABC\)   (Hai cạnh góc vuông)

c) Do BE là tia phân giác góc ABC nên \(\widehat{ABE}=\widehat{CBE}=30^o\)

Do \(\Delta ABD=\Delta ABC\Rightarrow\hept{\begin{cases}DB=CB\\\widehat{DBA}=\widehat{CBA}=60^o\end{cases}}\)

\(\Rightarrow\widehat{DBE}=\widehat{DBA}+\widehat{ABE}=60^o+30^o=90^o\)

Do BA và CE cùng vuông góc với AC nên BC // CE. Vậy thì \(\widehat{BEC}=\widehat{ABE}=30^o\)

Xét tam giác BCE có: \(\widehat{BEC}=\widehat{CBE}=30^o\) nên nó là tam giác cân. Hay BC = CE

Từ đó ta có : DB = EC

Xét tam giác vuông DBE và ECD có:

DB = EC

DE chung

\(\Rightarrow\Delta DBE=\Delta ECD\)  (Cạnh huyền cạnh góc vuông)

\(\Rightarrow BE=CD\)

Mà CD = CA + AD = 2AC

Vậy nên BE = 2AC.

5 tháng 12 2017

Làm ơn gợi ý lời giải câu C. Cảm ơn 

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

12 tháng 6 2017

Bài 1:

a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)

Mà góc xDc = 70 độ (gt)

Nên góc ACB = 70 độ

b) Ta có:

góc BAD + góc BAC = 180 độ do 2 góc kề bù

góc BAD = 180 độ - 40 độ = 140 độ

Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD

Nên góc BAy = 1/2 .140 độ = 70 độ   (1)

Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:

góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ   (2)

Từ (1) và (2) suy ra góc BAy = góc ABC

Mà 2 góc này nằm ở vị trí so le trong 

Nên Ay // BC.

Bài 2:

a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)

Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC) 

Nên góc xBC = góc BMN.

b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)

Mà  góc xBC = góc BMN ( chứng minh câu a)

Nên góc xBC = góc MNy

Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)

=.> góc MNy = góc CNy

=> Ny là tia phân giác của góc MNC

17 tháng 8 2018

Bài giải : 

Bài 1:

a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)

Mà góc xDc = 70 độ (gt)

Nên góc ACB = 70 độ

b) Ta có:

góc BAD + góc BAC = 180 độ do 2 góc kề bù

góc BAD = 180 độ - 40 độ = 140 độ

Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD

Nên góc BAy = 1/2 .140 độ = 70 độ   (1)

Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:

góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ   (2)

Từ (1) và (2) suy ra góc BAy = góc ABC

Mà 2 góc này nằm ở vị trí so le trong 

Nên Ay // BC.

Bài 2:

a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)

Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC) 

Nên góc xBC = góc BMN.

b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)

Mà  góc xBC = góc BMN ( chứng minh câu a)

Nên góc xBC = góc MNy

Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)

=.> góc MNy = góc CNy

=> Ny là tia phân giác của góc MNC