Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A C B D E
a) Xét tam giác vuông ABC, ta có: \(\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o\)
b) Ta thấy góc \(\widehat{BAD}\) và \(\widehat{BAC}\) là hai góc kề bù, mà \(\widehat{BAC}=90^o\Rightarrow\widehat{BAD}=90^o\)
Xét hai tam giác vuông ABD và ABC có:
BA chung
DA = CA (gt)
\(\Rightarrow\Delta ABD=\Delta ABC\) (Hai cạnh góc vuông)
c) Do BE là tia phân giác góc ABC nên \(\widehat{ABE}=\widehat{CBE}=30^o\)
Do \(\Delta ABD=\Delta ABC\Rightarrow\hept{\begin{cases}DB=CB\\\widehat{DBA}=\widehat{CBA}=60^o\end{cases}}\)
\(\Rightarrow\widehat{DBE}=\widehat{DBA}+\widehat{ABE}=60^o+30^o=90^o\)
Do BA và CE cùng vuông góc với AC nên BC // CE. Vậy thì \(\widehat{BEC}=\widehat{ABE}=30^o\)
Xét tam giác BCE có: \(\widehat{BEC}=\widehat{CBE}=30^o\) nên nó là tam giác cân. Hay BC = CE
Từ đó ta có : DB = EC
Xét tam giác vuông DBE và ECD có:
DB = EC
DE chung
\(\Rightarrow\Delta DBE=\Delta ECD\) (Cạnh huyền cạnh góc vuông)
\(\Rightarrow BE=CD\)
Mà CD = CA + AD = 2AC
Vậy nên BE = 2AC.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)
Mà góc xDc = 70 độ (gt)
Nên góc ACB = 70 độ
b) Ta có:
góc BAD + góc BAC = 180 độ do 2 góc kề bù
góc BAD = 180 độ - 40 độ = 140 độ
Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD
Nên góc BAy = 1/2 .140 độ = 70 độ (1)
Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:
góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ (2)
Từ (1) và (2) suy ra góc BAy = góc ABC
Mà 2 góc này nằm ở vị trí so le trong
Nên Ay // BC.
Bài 2:
a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)
Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC)
Nên góc xBC = góc BMN.
b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)
Mà góc xBC = góc BMN ( chứng minh câu a)
Nên góc xBC = góc MNy
Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)
=.> góc MNy = góc CNy
=> Ny là tia phân giác của góc MNC
Bài giải :
Bài 1:
a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)
Mà góc xDc = 70 độ (gt)
Nên góc ACB = 70 độ
b) Ta có:
góc BAD + góc BAC = 180 độ do 2 góc kề bù
góc BAD = 180 độ - 40 độ = 140 độ
Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD
Nên góc BAy = 1/2 .140 độ = 70 độ (1)
Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:
góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ (2)
Từ (1) và (2) suy ra góc BAy = góc ABC
Mà 2 góc này nằm ở vị trí so le trong
Nên Ay // BC.
Bài 2:
a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)
Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC)
Nên góc xBC = góc BMN.
b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)
Mà góc xBC = góc BMN ( chứng minh câu a)
Nên góc xBC = góc MNy
Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)
=.> góc MNy = góc CNy
=> Ny là tia phân giác của góc MNC