Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H x c a b D
Ta có: \(tan\frac{B}{2}=\frac{x}{c}\)
Lại có \(AB=BH=c\Rightarrow HC=a-c\)
Ta có: \(DC^2=DH^2+DC^2\Rightarrow\left(b-x\right)^2=x^2+\left(a-c\right)^2\)
\(\Rightarrow x^2-2bx+b^2=x^2+\left(a-c\right)^2\Rightarrow x=\frac{b^2-\left(a-c\right)^2}{2b}=\frac{a^2-c^2-a^2+2ac-c^2}{2b}\)
\(=\frac{2ac-2c^2}{2b}=\frac{c\left(a-c\right)}{b}\)
\(\left(\frac{x}{c}\right)^2=\frac{\left(a-c\right)^2}{b^2}=\frac{\left(a-c\right)^2}{a^2-c^2}=\frac{a-c}{a+c}\)
\(\Rightarrow tan\frac{B}{2}=\sqrt{\frac{a-c}{a+c}}\)
A B C D d c b
Ta có \(S_{ABC}=S_{ADB}+S_{ADC}\Leftrightarrow\frac{1}{2}bc=\frac{1}{2}cd.sin45^o+\frac{1}{2}bd.sin45^o\)
\(\Leftrightarrow\frac{1}{2}.sin45^o.d\left(b+c\right)=\frac{1}{2}bc\)
\(\Rightarrow\frac{b+c}{bc}=\frac{1}{sin45^o.d}\Leftrightarrow\frac{1}{b}+\frac{1}{c}=\frac{\sqrt{2}}{d}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)