K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AQMP có 

\(\widehat{AQM}\) và \(\widehat{APM}\) là hai góc đối

\(\widehat{AQM}+\widehat{APM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AQMP là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét ΔAQM vuông tại Q và ΔAPM vuông tại P có

AM chung

\(\widehat{QAM}=\widehat{PAM}\)(AM là tia phân giác của \(\widehat{QAP}\))

Do đó: ΔAQM=ΔAPM(cạnh huyền-góc nhọn)

Suy ra: QM=PM(hai cạnh tương ứng)

Xét ΔMQP có QM=PM(cmt)

nên ΔMQP cân tại M(Định nghĩa tam giác cân)

16 tháng 2 2021

giúp em câu c với

 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEC vuông tại B có BA là đường cao ứng với cạnh huyền CE, ta được:

\(BA^2=AE\cdot AC\)

\(\Leftrightarrow AE=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)

Xét ΔABC vuông tại A có

\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)

nên \(\widehat{C}\simeq36^052'\)

b) Xét ΔMAB vuông tại M và ΔABE vuông tại A có 

\(\widehat{MAB}=\widehat{ABE}\)(hai góc so le trong, AM//BE)

Do đó: ΔMAB\(\sim\)ΔABE(g-g)

 

8 tháng 8 2021

mk cần câu c và d ạ

b: Ta có: AM//BE

nên \(\widehat{MAB}=\widehat{ABE}\)

9 tháng 9 2021

Câu c và d ạ