K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
8 tháng 8 2021
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEC vuông tại B có BA là đường cao ứng với cạnh huyền CE, ta được:
\(BA^2=AE\cdot AC\)
\(\Leftrightarrow AE=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)
nên \(\widehat{C}\simeq36^052'\)
b) Xét ΔMAB vuông tại M và ΔABE vuông tại A có
\(\widehat{MAB}=\widehat{ABE}\)(hai góc so le trong, AM//BE)
Do đó: ΔMAB\(\sim\)ΔABE(g-g)
a) Xét tứ giác AQMP có
\(\widehat{AQM}\) và \(\widehat{APM}\) là hai góc đối
\(\widehat{AQM}+\widehat{APM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AQMP là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét ΔAQM vuông tại Q và ΔAPM vuông tại P có
AM chung
\(\widehat{QAM}=\widehat{PAM}\)(AM là tia phân giác của \(\widehat{QAP}\))
Do đó: ΔAQM=ΔAPM(cạnh huyền-góc nhọn)
Suy ra: QM=PM(hai cạnh tương ứng)
Xét ΔMQP có QM=PM(cmt)
nên ΔMQP cân tại M(Định nghĩa tam giác cân)
giúp em câu c với