Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó BC=2MN=5(cm)
b. Vì MN là đtb tg ABC nên \(MN=\dfrac{1}{2}BC;MN\text{//}BC\left(1\right)\)
Vì I,K là trung điểm MB,MC nên IK là đtb tg MBC
Do đó \(IK=\dfrac{1}{2}BC;IK\text{//}BC\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow MN=IK;MN\text{//}IK\\ \Rightarrow MNIK\text{ là hbh}\)
c. Để MNIK là hcn thì \(MI\bot MN\)
Mà \(MI\equiv AB;MN\text{//}BC\Leftrightarrow AB\bot BC\)
Vậy ABC vuông tại A thì MNIK là hcn
d. Kẻ đường cao AH của tam giác ABC và AMN
Do đó \(\dfrac{S_{ABC}}{S_{AMN}}=\dfrac{\dfrac{1}{2}AH\cdot BC}{\dfrac{1}{2}AH\cdot MN}=\dfrac{BC}{MN}=2\)
\(\Rightarrow S_{AMN}=\dfrac{1}{2}S_{ABC}=\dfrac{a}{2}\)
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC và MN=BC/2
=>BC=5cm
b: Xét ΔMBC có
MK/MB=MI/MC
nên KI//BC và KI=BC/2
=>MN//KI và MN=KI
=>MNIK là hình bình hành
(Mình chỉ giải câu c) theo yêu cầu thôi nhé ! :))
c) Ta có: AICK là hình bình hành (câu a)
Để AICK là hình thoi thì AC phải vuông góc với KI (2 đường chéo vuông góc với nhau)
mà KI // BC (BIKC là hình bình hành)
<=>AC vuông góc với BC
<=>tam giác ABC vuông tại C