Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Talet ta có :
+) \(MI//BK\Rightarrow\frac{AM}{AB}=\frac{MI}{BK}=\frac{AI}{AK}\) (1)
+) \(NI//CK\Rightarrow\frac{AN}{AC}=\frac{NI}{CK}=\frac{AI}{AK}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{MI}{BK}=\frac{NI}{CK}\) (3)
Mà : I là trung điểm của MN \(\Rightarrow MI=NI=\frac{MN}{2}\) (4)
Nên từ (3) và (4) \(\Rightarrow BK=CK\)
\(\Rightarrow\) K à trung điểm của BC (đpcm)
a/Có \(\frac{AM}{BM}=\frac{AN}{NC}=\frac{3}{4}\) Thales suy ra ĐPCM
b/Ta có \(\frac{MK}{BI}=\frac{AK}{AI}\left(1\right),\frac{NK}{IC}=\frac{AK}{AI}\left(2\right)\)
(1)=(2) mà BI=IC nên MK=NK
c/Vì MN//BC nên \(\frac{MK}{IC}=\frac{NK}{BI}\)
Ba đ/thẳng CM,BN,AI định lên 2 đ/thẳng MN//BC các cặp tỉ lệ bằng nhau nên chúng đồng quy tại 1 điểm
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)(1)
hay BMNC là hình thang
b: Xét ΔOBC có
I là trung điểm của OB
K là trung điểm của OC
Do đó: IK là đường trung bình của ΔOBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MN//IK và MN=IK
hay MNKI là hình bình hành
Tức ghê á, gửi cái ảnh cũng không được, tôi làm vậy !!
Tóm tắt :
Ta có :
\(\frac{MI}{BK}=\frac{MN}{BC}=\frac{AM}{AB}\) ( Talet ) . Rồi chứng minh hai tam giác đồng dạng AMI và ABK
\(\Rightarrow A,I,K\) thẳng hàng (1)
Lại có :
\(\frac{MI}{KC}=\frac{MN}{BC}=\frac{OM}{OC}\) ( Talet ). Rồi chứng minh hai tam giác đồng dạng MIO và CKO
\(\Rightarrow I,O,K\) thẳng hàng (2)
Từ (1) và (2) suy ra A,I,K,O thẳng hàng.
Đây nè, vừa hôm qua tôi có làm bài này rồi nè, nhưng không biết OLM có duyệt ảnh của tôi không nữa :((
Bạn tham khảo, thay các điểm khác thôi còn bài toán vẫn giống nhé !