Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có M; N; P lần lượt là trung đểm của AB; AC; BC nên NP; MP là đường trung bình của tam giác.
Suy ra: NP// AB; MP// AC
Do đó, AMPN là hình bình hành.
Theo quy tắc hình bình hành ta có A M → + A N → - A P → = 0 →
Đáp án C
Cho tam giác ABC có M thuộc cạnh BC sao cho CM=2MB và I là trung điểm của AB . Tính IM theo AB và AC
tính \(\overrightarrow{IM}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
Chọn C.
Theo định lí hàm cosin, ta có :
Do MC = 2MB nên BM = 1/3.BC = 2.
Theo định lí hàm cosin, ta có: AM2 = AB2 + BM2 - 2AB.BM.cos B = 42 + 22 -2.4.2.1/2 = 12
Do đó: .
Chọn A.
Ta có