K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEMF có

AE//MF

AF//ME

Do đó: AEMF là hình bình hành

b: Để AM=FE thì AEMF là hình chữ nhật

=>góc EAF=90 độ

a: Xét tứ giác AEMF có

AE//MF

AF//ME

Do đó: AEMF là hình bình hành

b: Để AM=FE thì AEMF là hình chữ nhật

=>góc EAF=90 độ

9 tháng 8 2020

a) Xét tứ giác AEMF có ME//AC; MF//AB => Là hình bình hành (TC)

b) Để AEMF là HCN <=> MFA=90 độ => MF vuông góc với AC

Do M là trđ BC; MF//AB => Theo đlí đảo của đtb thì F cx là trđ của AC => Xét tam giác AMC thì MF vừa là đg cao vừa là đường trung tuyến ứng với AC => Khi đó tam giác AMC cân tại M. CMTT thì tam giác AMB cx cân tại M

Khi đó để AEMF là HCN <=> AM=MC=MB=1/2.BC

Vậy M chỉ cần ở vị trí sao cho \(AM=\frac{1}{2}BC.\)   thì AEMF là HCN.

c) Theo câu b thì để AEMF là HCN <=> AM=MB=MC=1/2.BC.

<=> Tam giác ABC vuông tại A và có đường trung tuyến AM ứng với cạnh huyền BC.

Vậy tam giác ABC cần có điều kiện là vuông tại A.

19 tháng 11 2016

(Hình bạn tự vẽ nha)

a ,

Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .

b ,

Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB

Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .

-> AC là đường trung trực của MN

->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .

-> Tứ giác MANC là hình thoi.

c ,

Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)

Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .

-> AE = EB (2)

Vì tứ giác MANC là hình thoi nên AF=FC (3)

Từ (1),(2) và (3) suy ra BE = FC (4)

Từ (1) và (4) suy ra : AE + BE = AF + FC

hay AB = AC

-> Tam giác ABC là tam giác vuông cân .

Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .