Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì M1 và M2 là 2 góc đối đỉnh
=>M1 = M2
hay tam giác AMD = tam giác BMC
(Mình ko làm được xin lỗi bạn nha)
a: Xét ΔANE và ΔCNB có
NA=NC
\(\widehat{ANE}=\widehat{CNB}\)
NE=NB
Do đó: ΔANE=ΔCNB
Suy ra: \(\widehat{AEN}=\widehat{CBN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AE//BC
b: Xét ΔAMD và ΔBMC có
MA=MB
\(\widehat{AMD}=\widehat{BMC}\)
MD=MC
Do đó: ΔAMD=ΔBMC
A B C M N D E 1 2 1 1
Xét \(\Delta DAM\) và \(\Delta BAC\) có :
Ma = MB ( gt )
\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )
MA = MC ( gt )
=> \(\Delta DAM\)=\(\Delta BAC\) ( c . g . c)
=> BA = BC , \(\widehat{D_1}=\widehat{C_1}\)
Mà \(\widehat{D_1};\widehat{C_1}\) là 2 góc so le trong
=> AD // BC .
C/m tương tự ta có :
AE = BC ; AE // BC
Dễ thấy : Qua 2 tồn tại 2 đường thẳng cùng song song với BC . Theo tiên đề ơ - clit
=> Hai dường thẳng đó trùng nhau .
=> D ' A ' E thẳng hàng .
Mà DA = AE ( = BC )
=> A là trung điểm của DE
a) xét tam giác AMD và tam giác CMB có :
AM = CM ( vì Mlaf trung điểm của AC)
\(\widehat{AMD}=\widehat{CMB}\)(đối đỉnh)
MD = MB (gt)
=> tam giác AMD = tam giác CMB (c-g-c)
xét tam giác ANE và tam giác BNC có :
AN = BN ( vì N là trung điểm của AB)
\(\widehat{ANE}=\widehat{BNC}\)(đối đỉnh)
NE = CN (gt)
=> tam giác ANE = tam giác BNC (c-g-c)
b) vì tam giác AMD = tam giác CMB (cmt) => AD = BC (2 cạnh tương ứng)(1)
vì tam giác ANE = tam giác BNC (cmt) => AE = BC ( 2 cạnh tương ứng) (2)
từ (1), (2) => AD = AE (đpcm)
c) Vì tam giác AMD = tam giác CMB (cmt) => \(\widehat{MAD}=\widehat{MCB}\)(2 góc tương ứng)
mà \(\widehat{MAD}\)và \(\widehat{MCB}\)ở vị trí so le trong
do đó AD // BC (3)
Vì tam giác ANE = tam giác BNC (cmt) => \(\widehat{NAE}=\widehat{NBC}\)(2 góc tương ứng)
mà \(\widehat{NAE}\)và \(\widehat{NBC}\) ở vị trí so le trong
do đó AE // BC (4)
từ (3), (4) => A, E, D thẳng hàng (đpcm)