Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì I là trung điểm AC và MN nên AMCN là hbh
b, Vì M,I là trung điểm BC,AC nên MI là đtb tg BAC \(\Rightarrow MI=\dfrac{1}{2}AB\)
Vì I là trung điểm MN nên \(MI=\dfrac{1}{2}MN\)
Do đó \(MN=AB\)
c, Áp dụng định lí Menelaus cho tam giác ABM và cát tuyến DOC
\(\dfrac{DA}{DB}\cdot\dfrac{CB}{CM}\cdot\dfrac{OM}{OA}=1\\ \Rightarrow\dfrac{DA}{DB}\cdot2\cdot1=1\\ \Rightarrow\dfrac{DA}{DB}=\dfrac{1}{2}\)
Do đó \(DB=2AD\)
a: Xét tứ giác AMCN có
D là trung điểm chung của AC và MN
=>AMCN là hình bình hành
b:AMCN là hình bình hành
=>AN//CM và AN=CM
AN=CM
MB=MC
Do đó: AN=MB
AN//CM
\(M\in BC\)
Do đó: AN//MB
Xét tứ giác ABMN có
AN//MB
AN=MB
Do đó: ABMN là hình bình hành
=>AM cắt BN tại trung điểm của mỗi đường
mà I là trung điểm của AC
nên I là trung điểm của BN
=>B,I,N thẳng hàng
a: Ta có; ΔABC cân tại A
mà AM là đường trung tuyến
nên AM\(\perp\)BC
Xét tứ giác AMCN có
I là trung điểm chung của AC và MN
=>AMCN là hình bình hành
Hình bình hành AMCN có \(\widehat{AMC}=90^0\)
nên AMCN là hình chữ nhật
b: ta có: AMCN là hình chữ nhật
=>AN//CM và AN=CM
Ta có: AN//CM
M\(\in\)BC
Do đó: AN//MB
Ta có: AN=CM
BM=CM
Do đó: AN=MB
Xét tứ giác ABMN có
AN//MB
AN=MB
Do đó: ABMN là hình bình hành
=>AM cắt BN tại trung điểm của mỗi đường
mà E là trung điểm của AM
nên E là trung điểm của BN
(a) \(I,M\) là trung điểm của \(AB,BC\Rightarrow IM\) là đường trung bình của \(\Delta ABC\Rightarrow\left\{{}\begin{matrix}IM\left|\right|AC\Leftrightarrow MD\left|\right|AC\left(1\right)\\IM=\dfrac{1}{2}AC\end{matrix}\right.\)
Lại có: \(IM=ID\Rightarrow MD=2IM=2\cdot\dfrac{1}{2}AC=AC\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow ADMC\) là hình bình hành (điều phải chứng minh).
(b) \(\left\{{}\begin{matrix}MI\left|\right|AC\left(cmt\right)\\AC\perp AB\left(gt\right)\end{matrix}\right.\Rightarrow MI\perp AB\Rightarrow\hat{AIM}=90^o\left(3\right)\).
\(M,K\) là trung điểm của \(BC,AC\Rightarrow MK\) là đường trung bình của \(\Delta ABC\Rightarrow MK\left|\right|AB\), mà \(AB\perp AC\left(gt\right)\Rightarrow MK\perp AC\Rightarrow\hat{AKM}=90^o\left(4\right)\).
Ta cũng có: \(\hat{A}=90^o\left(5\right)\).
Từ \(\left(3\right),\left(4\right),\left(5\right)\Rightarrow AIMK\) là hình chữ nhật (điều phải chứng minh).
(c) Do \(AIMK\) là hình chữ nhật (chứng minh trên) nên \(\left\{{}\begin{matrix}AK\left|\right|MI\Leftrightarrow AK\left|\right|ID\\AK=MI=ID\end{matrix}\right.\Rightarrow AKID\) là hình bình hành \(\Rightarrow IK\left|\right|AD\left(6\right)\).
Lại có: \(I,K\) là trung điểm của \(MD,MQ\Rightarrow IK\) là đường trung bình của \(\Delta MQD\Rightarrow IK\left|\right|QD\left(7\right)\)
Từ \(\left(6\right),\left(7\right)\Rightarrow Q,A,D\) thẳng hàng (điều phải chứng minh).
a: Xét tứ giác AMCN có
AM//CN
AN//CM
Do đó: AMCN là hình bình hành