Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Xét 2 TG AMB và EMC; ta có:
MA=ME(gt); MB=MC( vì M là trung điềm BC); BMA=EMC( đối đỉnh)
=>TG AMB=TG EMC(c.g.c)
b. TG AMB= TG EMC=> BAM=MEC(2 góc tương ứng)
mà chung lại ờ vị trí slt
=>AB//CE
a.Xét tam giác ABM và tam giác ECM có:
MA=ME(gt)
MB=MC(gt)
góc AMB=góc EMC(đối đỉnh)
Do đó tam giác ABM=tam giác ECM(c.g.c)
b. Vì tam giác ABM= tam giác ECM
=>góc AMB=góc CME(2 góc tương ứng)
=>AB//CE(2 góc bằng nhau ở vị trí so le trong)
Nhớ vẽ hình cho dễ so sánh nha bạn
https://cunghocvui.com/danh-muc/toan-lop-7 Trong này có lời giải nhée
Xét \(\Delta ABM\)và\(\Delta ECM\)có :
\(M_1=M_2\)(đối đỉnh)
\(BM=CM\)(gt)
\(AM=EM\)(gt)
\(=>\Delta ABM=\Delta ECM\)(c.g.c)
b,Do \(\Delta ABM=\Delta ECM\)(câu a)
\(=>A=E\)
\(=>AB//EC\)(so le trong)
c, Do \(HF\)là tia đối của tia \(HA\)(1)
Mà\(AHB=90^0\)(2)
Từ (1) và (2) => \(FHB=AHB=90^0\)
Xét \(\Delta AHB\)và \(\Delta FHB\)có :
\(AH=FH\)(gt)
\(HB\)(cạnh chung)
\(AHB=FHB\)(c/m trên)
\(=>\Delta AHB=\Delta FHB\)(c.g.c)
\(=>ABH=FBH\)
\(=>ĐPCM\)
P/S: Chưa check lại và chưa ghi dấu nón cho góc =))
hình tự vẽ nha:
a, xét △ABM và △ecm có:
AM=ME(gt)
AMB=CME ( 2 góc đối đỉnh)
BM=CM (M là trung điểm của BC)
suy ra △ABM=△ECM(c.g.c)
b, vì △ABM=△ECM
NÊN BAM=CEM( 2 góc tương ứng)
mà 2 góc này SLT
nên AB//CE
hình tự vẽ nha:
a, xét △ABM và △ecm có:
AM=ME(gt)
AMB=CME ( 2 góc đối đỉnh)
BM=CM (M là trung điểm của BC)
suy ra △ABM=△ECM(c.g.c)
b, vì △ABM=△ECM
NÊN BAM=CEM( 2 góc tương ứng)
mà 2 góc này SLT
nên AB//CE
a: Xét ΔAMB và ΔEMC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔAMB=ΔEMC
b: Ta có: ΔAMB=ΔEMC
nên \(\widehat{MAB}=\widehat{MEC}\)
c: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AB//CE