K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBDC có 

M là trung điểm của BC

ME//BD

Do đó: E là trung điểm của DC

=>DE=EC(1)

Xét ΔAME có 

I là trung điểm của AM

ID//ME

Do đó; D là trung điểm của AE

=>AD=DE(2)

Từ (1) và (2) suy ra AD=DE=EC

b: Xét ΔAME có 

I là trung điểm của AM

D là trung điểm của AE

Do đó:ID là đường trung bình

=>ID=1/2ME

hay ME=2ID

Xét ΔBDC có 

M là trung diểm của BC

E là trung điểm của DC

Do đó: ME là đường trung bình

=>ME=BD/2

=>2ID=BD/2

=>ID=BD/4

Câu 2: 

a: Xét ΔAME có

I là trung điểm của AM

ID//ME

Do đó: Dlà trung điểm của AE

=>AD=DE(1)

Xét ΔBDC có

M làz trung điểm của BC

ME//BD

Do đó: E là trung điểm của CD

=>DE=EC(2)

Từ (1) và (2) suy ra AD=DE=EC

b: Xét ΔAME có ID//ME

nên ID/ME=AD/AE
=>ID/ME=1/2

=>hay ME=2ID

Xét ΔBDC có ME//BD

nên ME/BD=CE/CD

=>ME/BD=1/2

=>ME=1/2BD

=>2ID=1/2BD

hay DI=1/4BD

17 tháng 1 2018

A D E B C K
Ta có : \(A\widehat{_1}\)=\(\widehat{ADE}\)( 2 góc so le trong , DE // AB )    (1)
           \(\widehat{A_1}=\widehat{A_2}\) ( Góc phân giác của góc A )     (2)
             Từ ( 1) và (2) suy ra : \(\widehat{ADE}\)=\(\widehat{A_2}\)
=> \(\Delta\)ADE là tam giác cân 

2 tháng 10 2018

A B C M K I E D H

MK nêu cách giải thôi nha! Lười quá!!!

a, CM tứ giác MEAD là hình bình hành.( bạn tự cm)

Vì tứ giác MEAD là hình bình hành nên 2 đường chéo DE và AM cắt nhau tại trung điểm mỗi đường.

Mà điểm \(I\) là trung điểm của AM Suy ra \(I\) cũng là TĐ của DE

\(\Rightarrow I\in DE\) Suy ra \(I,D,E\) thẳng hàng

b, Kẻ \(IK\bot BC\) và \(AH\bot BC\) \((K,H \in BC)\)

Ta có

Vì  \(IA=IM\) và \(IK//AH\)

\(\Rightarrow MK=KH\) \(\Rightarrow \) \(IK\) là đường trung bình của \(\Delta AMH\)

\(\Rightarrow IK=\dfrac{AH}{2}\) (1)

Lại có: Áp dụng định lí Py-ta-go cho \(\Delta AHC\)

\(\Rightarrow AH^2=AC^2-HC^2\)

             \(=AC^2-{\left(\dfrac{BC}{2}\right)}^2\) \(=AC^2-{\left(\dfrac{AC}{2}\right)}^2\) ( Do \(\Delta ABC\) đều)

             \(=AC^2-\dfrac{AC^2}{4}=\dfrac{3AC^2}{4}\)

\(\Rightarrow AH=\dfrac{\sqrt3 AC}{4}\) (2) 

Từ (1)(2) suy ra \(IK=\dfrac{\sqrt3}{8}AC\)

Vì AC không đổi nên \(IK\) ko đổi.

Khoảng cách từ \(I\) đến BC ko đổi suy ra khi M di chuyển trên BC thì \(I\) di chuyển trên đường thẳng song song với BC

và cách BC một khoảng =\(\dfrac{\sqrt3}{8}AC=\dfrac{\sqrt3}{8}BC\)